Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35886036

RESUMO

Through its role in the regulation of gene expression, DNA methylation can participate in the control of specialized metabolite production. We have investigated the link between DNA methylation and anthocyanin accumulation in grapevine using the hypomethylating drug, zebularine and Gamay Teinturier cell suspensions. In this model, zebularine increased anthocyanin accumulation in the light, and induced its production in the dark. To unravel the underlying mechanisms, cell transcriptome, metabolic content, and DNA methylation were analyzed. The up-regulation of stress-related genes, as well as a decrease in cell viability, revealed that zebularine affected cell integrity. Concomitantly, the global DNA methylation level was only slightly decreased in the light and not modified in the dark. However, locus-specific analyses demonstrated a decrease in DNA methylation at a few selected loci, including a CACTA DNA transposon and a small region upstream from the UFGT gene, coding for the UDP glucose:flavonoid-3-O-glucosyltransferase, known to be critical for anthocyanin biosynthesis. Moreover, this decrease was correlated with an increase in UFGT expression and in anthocyanin content. In conclusion, our data suggest that UFGT expression could be regulated through DNA methylation in Gamay Teinturier, although the functional link between changes in DNA methylation and UFGT transcription still needs to be demonstrated.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Citidina/análogos & derivados , Metilação de DNA/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Fungal Genet Biol ; 153: 103566, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991664

RESUMO

Fusarium graminearum is one of the most frequent causal agents of the Fusarium Head Blight, a cereal disease spread throughout the world, reducing grain production and quality. F. graminearum isolates are genetically and phenotypically highly diverse. Notably, remarkable variations of aggressiveness between isolates have been observed, which could reflect an adaptive potential of this pathogen. In this study, we aimed to characterize the genetic basis of aggressiveness variation observed in an F1 population (n = 94), for which genome sequences of both parental strains are available. Aggressiveness was assessed by a panel of in planta and in vitro proxies during two phenotyping trials including, among others, disease severity and mycotoxin accumulation in wheat spike. One major and single QTL was mapped for all the traits measured, on chromosome I, that explained up to 90% of the variance for disease severity. The confidence interval at the QTL spanned 1.2 Mb and contained 428 genes on the reference genome. Of these, four candidates were selected based on the postulate that a non-synonymous mutation affecting protein function may be responsible for phenotypic differences. Finally, a new mutation was identified and functionally validated in the gene FgVe1, coding for a velvet protein known to be involved in pathogenicity and secondary metabolism production in several fungi.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Triticum/microbiologia , Alelos , Mapeamento Cromossômico , Cromossomos Fúngicos , Genes Fúngicos , Mutação , Fenótipo , Locos de Características Quantitativas , Metabolismo Secundário/genética
3.
PLoS Genet ; 16(10): e1009125, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33091009

RESUMO

Fusarium head blight is a destructive disease of grains resulting in reduced yields and contamination of grains with mycotoxins worldwide; Fusarium graminearum is its major causal agent. Chromatin structure changes play key roles in regulating mycotoxin biosynthesis in filamentous fungi. Using a split-marker approach in three F. graminearum strains INRA156, INRA349 and INRA812 (PH-1), we knocked out the gene encoding H2A.Z, a ubiquitous histone variant reported to be involved in a diverse range of biological processes in yeast, plants and animals, but rarely studied in filamentous fungi. All ΔH2A.Z mutants exhibit defects in development including radial growth, sporulation, germination and sexual reproduction, but with varying degrees of severity between them. Heterogeneity of osmotic and oxidative stress response as well as mycotoxin production was observed in ΔH2A.Z strains. Adding-back wild-type H2A.Z in INRA349ΔH2A.Z could not rescue the phenotypes. Whole genome sequencing revealed that, although H2A.Z has been removed from the genome and the deletion cassette is inserted at H2A.Z locus only, mutations occur at other loci in each mutant regardless of the genetic background. Genes affected by these mutations encode proteins involved in chromatin remodeling, such as the helicase Swr1p or an essential subunit of the histone deacetylase Rpd3S, and one protein of unknown function. These observations suggest that H2A.Z and the genes affected by such mutations are part or the same genetic interaction network. Our results underline the genetic plasticity of F. graminearum facing detrimental gene perturbation. These findings suggest that intergenic suppressions rescue deleterious phenotypes in ΔH2A.Z strains, and that H2A.Z may be essential in F. graminearum. This assumption is further supported by the fact that H2A.Z deletion failed in another Fusarium spp., i.e., the rice pathogen Fusarium fujikuroi.


Assuntos
Fusarium/genética , Histonas/genética , Estresse Oxidativo/genética , Doenças das Plantas/genética , Adenosina Trifosfatases/genética , Resistência à Doença/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Heterogeneidade Genética , Genoma Fúngico/genética , Germinação/genética , Histona Desacetilases/genética , Mutação/genética , Pressão Osmótica , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/genética , Triticum/microbiologia , Virulência/genética , Sequenciamento Completo do Genoma
4.
Mol Plant Pathol ; 19(2): 341-354, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27998012

RESUMO

Recombination is a major evolutionary force, increasing genetic diversity and permitting efficient coevolution of fungal pathogen(s) with their host(s). The ascomycete Fusarium graminearum is a devastating pathogen of cereal crops, and can contaminate food and feed with harmful mycotoxins. Previous studies have suggested a high adaptive potential of this pathogen, illustrated by an increase in pathogenicity and resistance to fungicides. In this study, we provide the first detailed picture of the crossover events occurring during meiosis and discuss the role of recombination in pathogen evolution. An experimental recombinant population (n = 88) was created and genotyped using 1306 polymorphic markers obtained from restriction site-associated DNA sequencing (RAD-seq) and aligned to the reference genome. The construction of a high-density linkage map, anchoring 99% of the total length of the reference genome, allowed the identification of 1451 putative crossovers, positioned at a median resolution of 24 kb. The majority of crossovers (87.2%) occurred in a relatively small portion of the genome (30%). All chromosomes demonstrated recombination-active sections, which had a near 15-fold higher crossover rate than non-active recombinant sections. The recombination rate showed a strong positive correlation with nucleotide diversity, and recombination-active regions were enriched for genes with a putative role in host-pathogen interaction, as well as putative diversifying genes. Our results confirm the preliminary analysis observed in other F. graminearum strains and suggest a conserved 'two-speed' recombination landscape. The consequences with regard to the evolutionary potential of this major fungal pathogen are also discussed.


Assuntos
Fusarium/genética , Genoma Fúngico/genética , Variação Genética/genética , Variação Genética/fisiologia , Genótipo , Meiose/genética , Meiose/fisiologia
5.
Mol Plant Pathol ; 17(6): 920-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26582186

RESUMO

The blue mould decay of apples is caused by Penicillium expansum and is associated with contamination by patulin, a worldwide regulated mycotoxin. Recently, a cluster of 15 genes (patA-patO) involved in patulin biosynthesis was identified in P. expansum. blast analysis revealed that patL encodes a Cys6 zinc finger regulatory factor. The deletion of patL caused a drastic decrease in the expression of all pat genes, leading to an absence of patulin production. Pathogenicity studies performed on 13 apple varieties indicated that the PeΔpatL strain could still infect apples, but the intensity of symptoms was weaker compared with the wild-type strain. A lower growth rate was observed in the PeΔpatL strain when this strain was grown on nine of the 13 apple varieties tested. In the complemented PeΔpatL:patL strain, the ability to grow normally in apple and the production of patulin were restored. Our results clearly demonstrate that patulin is not indispensable in the initiation of the disease, but acts as a cultivar-dependent aggressiveness factor for P. expansum. This conclusion was strengthened by the fact that the addition of patulin to apple infected by the PeΔpatL mutant restored the normal fungal colonization in apple.


Assuntos
Malus/microbiologia , Patulina/farmacologia , Penicillium/fisiologia , Deleção de Genes , Genes Fúngicos , Teste de Complementação Genética , Malus/efeitos dos fármacos , Mutação/genética , Patulina/biossíntese , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Virulência
6.
FEMS Microbiol Lett ; 363(2): fnv232, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656279

RESUMO

This study aims to compare the role of the transcription factor Fgap1 in oxidative stress response for two Fusarium graminearum strains belonging to the two chemotypes DON/ADON and NIV/FX. While the response to H2O2 was shown to be chemotype dependent, an opposite result was observed for diamide: whatever the chemotype, the global level of TCTB (i.e. trichothecene B) production was strongly increased by the treatment with diamide. Fgap1 was shown to be involved in this regulation for both chemotypes. Our data show that the response to diamide is mediated by Fgap1 whatever the chemotype of the F. graminearum strains. However, the NIV/FX chemotype has developed higher antioxidant capacities in response to oxidative stress. But when this capacity is overwhelmed by an increment in the H2O2 level, the NIV/FX strains also responds by an increase in toxin accumulation.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Diamida/farmacologia , Proteínas Fúngicas/genética , Fusarium/efeitos dos fármacos , Fusarium/genética , Peróxido de Hidrogênio/farmacologia , Fatores de Transcrição/genética
7.
Mol Plant Microbe Interact ; 27(10): 1148-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25014591

RESUMO

Fusarium verticillioides infects maize ears, causing ear rot disease and contamination of grain with fumonisin mycotoxins. This contamination can be reduced by the presence of bioactive compounds in kernels that are able to inhibit fumonisin biosynthesis. To identify such compounds, we used kernels from a maize genotype with moderate susceptibility to F. verticillioides, harvested at the milk-dough stage (i.e., when fumonisin production initiates in planta), and applied a bioguided fractionation approach. Chlorogenic acid was the most abundant compound in the purified active fraction and its contribution to fumonisin inhibitory activity was up to 70%. Moreover, using a set of maize genotypes with different levels of susceptibility, chlorogenic acid was shown to be significantly higher in immature kernels of the moderately susceptible group. Altogether, our data indicate that chlorogenic acid may considerably contribute to either maize resistance to Fusarium ear rot, fumonisin accumulation, or both. We further investigated the mechanisms involved in the inhibition of fumonisin production by chlorogenic acid and one of its hydrolyzed products, caffeic acid, by following their metabolic fate in supplemented F. verticillioides broths. Our data indicate that F. verticillioides was able to biotransform these phenolic compounds and that the resulting products can contribute to their inhibitory activity.


Assuntos
Ácido Clorogênico/isolamento & purificação , Fumonisinas/metabolismo , Fusarium/química , Doenças das Plantas/microbiologia , Extratos Vegetais/isolamento & purificação , Zea mays/química , Vias Biossintéticas , Biotransformação , Ácidos Cafeicos/química , Ácidos Cafeicos/isolamento & purificação , Ácidos Cafeicos/metabolismo , Fracionamento Químico , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Resistência à Doença , Fumonisinas/análise , Fusarium/metabolismo , Genótipo , Doenças das Plantas/imunologia , Extratos Vegetais/química , Sementes/química , Sementes/imunologia , Sementes/metabolismo , Sementes/microbiologia , Especificidade da Espécie , Zea mays/imunologia , Zea mays/metabolismo , Zea mays/microbiologia
8.
Cell Host Microbe ; 14(6): 696-706, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24331467

RESUMO

Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA methyltransferase (Plasmodium falciparum DNA methyltransferase; PfDNMT) that may mediate these genomic modifications. These analyses revealed that the malaria genome is asymmetrically methylated and shares common features with undifferentiated plant and mammalian cells. Notably, core promoters are hypomethylated, and transcript levels correlate with intraexonic methylation. Additionally, there are sharp methylation transitions at nucleosome and exon-intron boundaries. These data suggest that DNA methylation could regulate virulence gene expression and transcription elongation. Furthermore, the broad range of action of DNA methylation and the uniqueness of PfDNMT suggest that the methylation pathway is a potential target for antimalarial strategies.


Assuntos
Metilação de DNA , DNA de Protozoário/química , Genoma de Protozoário , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Cromatografia Líquida , DNA de Protozoário/metabolismo , DNA-Citosina Metilases/metabolismo , Epigênese Genética , Eritrócitos/parasitologia , Humanos , Plasmodium falciparum/enzimologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA