Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 46(14): 6935-6949, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29982705

RESUMO

The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein-protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.


Assuntos
Candida albicans/genética , Fases de Leitura Aberta , Candida albicans/patogenicidade , Bases de Dados de Ácidos Nucleicos , Vetores Genéticos , Genômica , Mapeamento de Interação de Proteínas
3.
Antimicrob Agents Chemother ; 60(3): 1438-49, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666917

RESUMO

In a search for new antifungal compounds, we screened a library of 4,454 chemicals for toxicity against the human fungal pathogen Aspergillus fumigatus. We identified sr7575, a molecule that inhibits growth of the evolutionary distant fungi A. fumigatus, Cryptococcus neoformans, Candida albicans, and Saccharomyces cerevisiae but lacks acute toxicity for mammalian cells. To gain insight into the mode of inhibition, sr7575 was screened against 4,885 S. cerevisiae mutants from the systematic collection of haploid deletion strains and 977 barcoded haploid DAmP (decreased abundance by mRNA perturbation) strains in which the function of essential genes was perturbed by the introduction of a drug resistance cassette downstream of the coding sequence region. Comparisons with previously published chemogenomic screens revealed that the set of mutants conferring sensitivity to sr7575 was strikingly narrow, affecting components of the endoplasmic reticulum-associated protein degradation (ERAD) stress response and the ER membrane protein complex (EMC). ERAD-deficient mutants were hypersensitive to sr7575 in both S. cerevisiae and A. fumigatus, indicating a conserved mechanism of growth inhibition between yeast and filamentous fungi. Although the unfolded protein response (UPR) is linked to ERAD regulation, sr7575 did not trigger the UPR in A. fumigatus and UPR mutants showed no enhanced sensitivity to the compound. The data from this chemogenomic analysis demonstrate that sr7575 exerts its antifungal activity by disrupting ER protein quality control in a manner that requires ERAD intervention but bypasses the need for the canonical UPR. ER protein quality control is thus a specific vulnerability of fungal organisms that might be exploited for antifungal drug development.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/toxicidade , Aspergillus fumigatus/efeitos dos fármacos , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Animais , Aspergillus fumigatus/genética , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Células HeLa/efeitos dos fármacos , Humanos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
PLoS Pathog ; 10(6): e1004211, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945925

RESUMO

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida glabrata/crescimento & desenvolvimento , Candidíase/tratamento farmacológico , Caspofungina , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Proteínas Fúngicas/genética , Deleção de Genes , Técnicas de Inativação de Genes , Biblioteca Gênica , Lipopeptídeos , Testes de Sensibilidade Microbiana , Pressão Osmótica , Fenótipo
5.
J Antimicrob Chemother ; 68(6): 1285-96, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23378416

RESUMO

OBJECTIVES: Candida albicans is the most prevalent fungal pathogen of humans, causing a wide range of infections from harmless superficial to severe systemic infections. Improvement of the antifungal arsenal is needed since existing antifungals can be associated with limited efficacy, toxicity and antifungal resistance. Here we aimed to identify compounds that act synergistically with echinocandin antifungals and that could contribute to a faster reduction of the fungal burden. METHODS: A total of 38 758 compounds were tested for their ability to act synergistically with aminocandin, a ß-1,3-glucan synthase inhibitor of the echinocandin family of antifungals. The synergy between echinocandins and an identified hit was studied with chemogenomic screens and testing of individual Saccharomyces cerevisiae and C. albicans mutant strains. RESULTS: We found that colistin, an antibiotic that targets membranes in Gram-negative bacteria, is synergistic with drugs of the echinocandin family against all Candida species tested. The combination of colistin and aminocandin led to faster and increased permeabilization of C. albicans cells than either colistin or aminocandin alone. Echinocandin susceptibility was a prerequisite to be able to observe the synergy. A large-scale screen for genes involved in natural resistance of yeast cells to low doses of the drugs, alone or in combination, identified efficient sphingolipid and chitin biosynthesis as necessary to protect S. cerevisiae and C. albicans cells against the antifungal combination. CONCLUSIONS: These results suggest that echinocandin-mediated weakening of the cell wall facilitates colistin targeting of fungal membranes, which in turn reinforces the antifungal activity of echinocandins.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Colistina/farmacologia , Equinocandinas/farmacologia , Animais , Antifúngicos/uso terapêutico , Candida/genética , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quitina/biossíntese , Colistina/uso terapêutico , Corantes , Sinergismo Farmacológico , Equinocandinas/uso terapêutico , Biblioteca Gênica , Aptidão Genética , Genótipo , Técnicas de Diluição do Indicador , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mutação/genética , Propídio , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Esfingolipídeos/biossíntese
6.
PLoS Pathog ; 8(5): e1002683, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589718

RESUMO

In nature, many microorganisms form specialized complex, multicellular, surface-attached communities called biofilms. These communities play critical roles in microbial pathogenesis. The fungal pathogen Candida albicans is associated with catheter-based infections due to its ability to establish biofilms. The transcription factor Bcr1 is a master regulator of C. albicans biofilm development, although the full extent of its regulation remains unknown. Here, we report that Bcr1 is a phosphoprotein that physically interacts with the NDR kinase Cbk1 and undergoes Cbk1-dependent phosphorylation. Mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to alanine markedly impaired Bcr1 function during biofilm formation and virulence in a mouse model of disseminated candidiasis. Cells lacking Cbk1, or any of its upstream activators, also had reduced biofilm development. Notably, mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to glutamate in cbk1Δ cells upregulated the transcription of Bcr1-dependent genes and partially rescued the biofilm defects of a cbk1Δ strain. Therefore, our data uncovered a novel role of the NDR/LATS kinase Cbk1 in the regulation of biofilm development through the control of Bcr1.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Candida albicans/genética , Candida albicans/metabolismo , Candidíase , Adesão Celular/genética , Feminino , Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
7.
Methods Mol Biol ; 845: 537-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328402

RESUMO

Real-time imaging of fungal infections is becoming integral to the study of host-pathogen interactions, as it allows monitoring of the spatial and temporal progression of pathogen growth or of the host response in a single animal as well as reducing the number of animals used to obtain significant data. We present different applications of a novel luciferase reporter gene constructed from the coding sequences of the Candida albicans PGA59 gene, encoding a GPI-linked cell wall protein, and the Gaussia princeps luciferase gene. Upon addition of the coelenterazine substrate, light produced by the surface-exposed luciferase can be used to quantify gene expression from a variety of C. albicans promoters as well as monitoring cutaneous, subcutaneous, and vaginal infections.


Assuntos
Candida albicans/patogenicidade , Candidíase Cutânea/genética , Perfilação da Expressão Gênica/métodos , Genes Reporter/genética , Luciferases/genética , Medições Luminescentes/métodos , Animais , Candidíase Cutânea/enzimologia , Candidíase Cutânea/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Luciferases/metabolismo , Camundongos , Vagina/metabolismo , Vagina/microbiologia
8.
PLoS One ; 5(8): e11993, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700541

RESUMO

BACKGROUND: Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Delta mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Delta cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Delta cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Delta mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p. CONCLUSIONS/SIGNIFICANCE: The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Delta cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Delta cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Delta cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it represents a promising antifungal drug target.


Assuntos
Candida albicans/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Proteínas Ativadoras de GTPase/genética , Hifas/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Homologia de Sequência do Ácido Nucleico , Citoesqueleto de Actina/metabolismo , Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/citologia , Candida albicans/genética , Candida albicans/fisiologia , Citoesqueleto/metabolismo , Farmacorresistência Fúngica/genética , Endocitose/genética , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Hifas/citologia , Hifas/genética , Hifas/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Transporte Proteico
9.
PLoS One ; 4(4): e5376, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19390637

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key metabolic regulator implicated in a variety of cellular processes. It functions as a glycolytic enzyme, a protein kinase, and a metabolic switch under oxidative stress. Its enzymatic inactivation causes a major shift in the primary carbohydrate flux. Furthermore, the protein is implicated in regulating transcription, ER-to-Golgi transport, and apoptosis. We found that Saccharomyces cerevisiae cells null for all GAPDH paralogues (Tdh1, Tdh2, and Tdh3) survived the counter-selection of a GAPDH-encoding plasmid when the NAD(+) metabolizing deacetylase Sir2 was overexpressed. This phenotype required a fully functional copy of SIR2 and resulted from hyper-recombination between S. cerevisiae plasmids. In the wild-type background, GAPDH overexpression increased the plasmid recombination rate in a growth-condition dependent manner. We conclude that GAPDH influences yeast episome stability via Sir2 and propose a model for the interplay of Sir2, GAPDH, and the glycolytic flux.


Assuntos
Glicólise/genética , Histona Desacetilases/metabolismo , Plasmídeos/genética , Recombinação Genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Histona Desacetilases/genética , Plasmídeos/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2 , Sirtuínas/genética
10.
FEMS Yeast Res ; 9(1): 126-42, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19054126

RESUMO

True hyphal growth of Candida albicans can be induced by several environmental conditions and contributes significantly to the high virulence of this pathogenic fungus. The transcriptional network that governs hyphal morphogenesis is complex, depends on several regulators and is not completely understood. Recently, CaUME6, a homolog of the Saccharomyces cerevisiae UME6 gene, has been shown to be required for hyphal elongation. In the present study, the C. albicans ume6Delta strain showed a complete defect in hyphae formation under all the growth conditions tested. UME6 was repressed by the Nrg1-Tup1 repressor in yeast-form cells but NRG1 was not repressed by Ume6p under hyphal growth conditions. Wild-type UME6 expression depended on each hyphal regulator tested, and ectopic UME6 expression in efg1Delta, cph1Delta and ras1Delta cells rescued the hyphal defects of these mutants under some hyphal growth conditions. Thus, UME6 is a common downstream target of regulators promoting hyphal development. Ectopic UME6 expression promoted both germ tube formation and hyphal elongation. The expression of all hyphae-specific genes investigated depended on UME6 expression. A model for transcriptional regulation of hyphal development and the role of Ume6p is proposed.


Assuntos
Candida albicans/fisiologia , Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Proteínas Repressoras/biossíntese , Candida albicans/genética , Proteínas Fúngicas/genética , Deleção de Genes , Perfilação da Expressão Gênica , Hifas/genética , Modelos Biológicos , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA