Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 185(21): 4023-4037.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36174579

RESUMO

High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.


Assuntos
Bacteriófagos , Vírus de RNA , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Filogenia , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Viroma
2.
Microbiol Resour Announc ; 10(34): e0061521, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435861

RESUMO

A thermophilic chemolithoautotrophic bacterium was isolated from vent fluids at Axial Seamount, an active deep-sea volcano in the northeast Pacific Ocean. We present the draft genome sequence of Desulfurobacterium sp. strain AV08.

3.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608294

RESUMO

Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed a remotely operated vehicle (ROV)-powered incubator instrument to carry out and compare results from in situ and shipboard RNA stable isotope probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes, suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations, suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, the results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under nearly native conditions in the ocean.IMPORTANCE Diverse microbial communities drive biogeochemical cycles in Earth's ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. We carried out identical stable isotope probing experiments coupled to RNA sequencing both on the seafloor and on the ship to examine thermophilic, microbial autotrophs in venting fluids from an active submarine volcano. Our results indicate that microbial communities were significantly impacted by the effects of depressurization and sample processing delays, with shipboard microbial communities being more stressed than seafloor incubations. Differences in metabolism were also apparent and are likely linked to the chemistry of the fluid at the beginning of the experiment. Microbial experimentation in the natural habitat provides new insights into understanding microbial activities in the ocean.


Assuntos
Técnicas Bacteriológicas/métodos , Fontes Hidrotermais/microbiologia , Microbiota/genética , Processos Autotróficos , Bactérias/genética , Sequência de Bases , Metagenoma , Pressão , RNA Ribossômico 16S/genética , Água do Mar , Navios , Fatores de Tempo
4.
mSystems ; 2(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28217745

RESUMO

Metagenomic and metatranscriptomic data were generated from size-fractionated samples from 11 sites within the Baltic Sea and adjacent marine waters of Kattegat and freshwater Lake Torneträsk in order to investigate the diversity, distribution, and transcriptional activity of virioplankton. Such a transect, spanning a salinity gradient from freshwater to the open sea, facilitated a broad genome-enabled investigation of natural as well as impacted aspects of Baltic Sea viral communities. Taxonomic signatures representative of phages within the widely distributed order Caudovirales were identified with enrichments in lesser-known families such as Podoviridae and Siphoviridae. The distribution of phage reported to infect diverse and ubiquitous heterotrophic bacteria (SAR11 clades) and cyanobacteria (Synechococcus sp.) displayed population-level shifts in diversity. Samples from higher-salinity conditions (>14 practical salinity units [PSU]) had increased abundances of viruses for picoeukaryotes, i.e., Ostreococcus. These data, combined with host diversity estimates, suggest viral modulation of diversity on the whole-community scale, as well as in specific prokaryotic and eukaryotic lineages. RNA libraries revealed single-stranded DNA (ssDNA) and RNA viral populations throughout the Baltic Sea, with ssDNA phage highly represented in Lake Torneträsk. Further, our data suggest relatively high transcriptional activity of fish viruses within diverse families known to have broad host ranges, such as Nodoviridae (RNA), Iridoviridae (DNA), and predicted zoonotic viruses that can cause ecological and economic damage as well as impact human health. IMPORTANCE Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more powerful uses of omics concerning ecosystem health. The use of omics-related data to assess ecosystem health holds great promise for rapid and relatively inexpensive determination of perturbations and risk, explicitly with regard to viral assemblages, as no single marker gene is suitable for widespread taxonomic coverage.

5.
PLoS One ; 8(12): e81862, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349140

RESUMO

Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.


Assuntos
Microbiologia do Ar , Bactérias/genética , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Bactérias/classificação , Biodiversidade , DNA Bacteriano/classificação , Monitoramento Ambiental , Genes de RNAr , Metagenômica , Análise de Componente Principal , RNA Ribossômico 16S/classificação
6.
Front Microbiol ; 4: 182, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23898323

RESUMO

Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

7.
J Vis Exp ; (75): e3899, 2013 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-23728084

RESUMO

Whole genome amplification and sequencing of single microbial cells enables genomic characterization without the need of cultivation (1-3). Viruses, which are ubiquitous and the most numerous entities on our planet (4) and important in all environments (5), have yet to be revealed via similar approaches. Here we describe an approach for isolating and characterizing the genomes of single virions called 'Single Virus Genomics' (SVG). SVG utilizes flow cytometry to isolate individual viruses and whole genome amplification to obtain high molecular weight genomic DNA (gDNA) that can be used in subsequent sequencing reactions.


Assuntos
Genoma Viral , Genômica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Vírion/genética , Bacteriófago lambda/genética , DNA Viral/química , DNA Viral/genética , DNA Viral/isolamento & purificação , Citometria de Fluxo/métodos , Microscopia Confocal , Fagos T/genética
8.
Front Microbiol ; 4: 120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750156

RESUMO

The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3, and 3-200 µm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-µm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-µm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-µm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-µm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-µm size fraction of the ETM (2-10X more abundant relative to the 0.1-µm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin.

9.
Artigo em Inglês | MEDLINE | ID: mdl-23159114

RESUMO

OBJECTIVE: The goal of this preliminary study was to use metagenomic approaches to investigate the taxonomic diversity of microorganisms in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ). STUDY DESIGN: Samples of saliva for planktonic microbial analysis and biofilm cultivation were collected from 10 patients (5 with BRONJ and 5 non-BRONJ control subjects) who met all ascertainment criteria. Prophage induction experiments-16S rRNA polymerase chain reaction and 454 pyrosequencing-and epifluorescent microscopy were performed for characterization and enumeration of microbes and viruses. RESULTS: Three phyla of microbes-Proteobacteria (70%), Firmicutes (26.9%), and Actinobacteria (1.95%)-dominated all BRONJ samples and accounted for almost 99% of the total data. Viral abundance was ∼1 order of magnitude greater than microbial cell abundance and comprised mainly phage viruses. CONCLUSIONS: Individuals with jaw osteonecrosis harbored different microbial assemblages than nonaffected patients, and in general viral abundance and prophage induction increased with biofilm formation, suggesting that biofilm formation encouraged lysogenic interactions between viruses and microbial hosts and may contribute to pathogenicity.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/microbiologia , Metagenômica , Idoso , Idoso de 80 Anos ou mais , Biofilmes , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/virologia , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Saliva/microbiologia , Saliva/virologia
10.
ISME J ; 6(7): 1403-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22278668

RESUMO

Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ~5.8 million predicted proteins across seven sites, from three different size classes: 0.1-0.8, 0.8-3.0 and 3.0-200.0 µm. Taxonomic and metabolic analyses suggest that sequences from the 0.1-0.8 µm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8-200 µm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially.


Assuntos
Bactérias/classificação , Metagenômica , Plâncton/classificação , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bacteroidetes/genética , California , Cianobactérias/genética , Ecossistema , Nitrogênio/metabolismo , Oceanos e Mares , Filogenia , Plâncton/genética , Plâncton/metabolismo , Fatores de Tempo
11.
PLoS One ; 6(5): e20388, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629664

RESUMO

The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above.


Assuntos
Metagenoma/genética , Água do Mar/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Citometria de Fluxo , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , Rhodospirillales/classificação , Rhodospirillales/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA