Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Vet Anim Res ; 11(1): 85-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38680811

RESUMO

Objective: This study was conducted to investigate the variants of the growth hormone receptor (GHR), growth hormone-releasing hormone (GHRH), pituitary-specific transcription factor-1 (PIT1), and signal transducer and activator of transcription 5A (STAT5) genes and their effect on growth performance and dressing percentage (DP) parameters. Materials and Methods: A total of 401 DNA samples from Sumba Ongole (SO) cattle were utilized for the polymerase chain reaction-restriction fragment length polymorphism method, of which 200 samples were used for the study of DP association and 74 samples were used to investigate growth performance. The SO cattle growth performance includes the following: birth weight, weaning weight at 205 days of age, weaning average daily gain (ADG), yearling weight at 365 days of age, and post-weaning ADG. Results: The GHR, GHRH, PIT1, and STAT5A genes showed polymorphism. The highest polymorphism information content value was shown in the STAT5A gene. The highest DP value was found in the SO cattle population with the CC genotype (STAT5A), and the lowest DP value was found in the SO cattle population with the GG genotype (GHR). The GHR and STAT5A genotypes were highly associated (p < 0.05) with the DP parameter. Based on locus combination analysis, the highest DP value was found in the SO cattle population with AG|CC genotype (GHR|STAT5A) (57.85%), AG|BB|CC genotype (GHR|GHRH|STAT5A) (57.85%), and AA|BB|BB|CC genotype 18 (GHR|GHRH|PIT1|STAT5A) (56.02%). Conclusion: All investigated genes in this study were polymorphic but were not associated with several growth parameters. The GHR and STAT5A genes can be proposed as genetic markers for the high DP trait in SO cattle in Indonesia, especially the AA genotype (GHR) and CC genotype (STAT5A).

2.
BMC Biol ; 19(1): 118, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34130700

RESUMO

BACKGROUND: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.


Assuntos
Galinhas , Domesticação , Animais , Animais Domésticos/genética , Galinhas/genética , Genoma , Genômica , Humanos
3.
Mol Ecol Resour ; 21(7): 2369-2387, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33942522

RESUMO

Biodiversity knowledge is widely heterogeneous across the Earth's biomes. Some areas, due to their remoteness and difficult access, present large taxonomic knowledge gaps. Mostly located in the tropics, these areas have frequently experienced a fast development of anthropogenic activities during the last decades and are therefore of high conservation concerns. The biodiversity hotspots of Southeast Asia exemplify the stakes faced by tropical countries. While the hotspots of Sundaland (Java, Sumatra, Borneo) and Wallacea (Sulawesi, Moluccas) have long attracted the attention of biologists and conservationists alike, extensive parts of the Sahul area, in particular the island of New Guinea, have been much less explored biologically. Here, we describe the results of a DNA-based inventory of aquatic and terrestrial vertebrate communities, which was the objective of a multidisciplinary expedition to the Bird's Head Peninsula (West Papua, Indonesia) conducted between 17 October and 20 November 2014. This expedition resulted in the assembly of 1005 vertebrate DNA barcodes. Based on the use of multiple species-delimitation methods (GMYC, PTP, RESL, ABGD), 264 molecular operational taxonomic units (MOTUs) were delineated, among which 75 were unidentified and an additional 48 were considered cryptic. This study suggests that the diversity of vertebrates of the Bird's Head is severely underestimated and considerations on the evolutionary origin and taxonomic knowledge of these biotas are discussed.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Animais , Aves/genética , DNA , Indonésia , Filogenia , Vertebrados/genética
5.
Cell Res ; 30(8): 693-701, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581344

RESUMO

Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.


Assuntos
Galinhas/genética , Genoma , Filogenia , Distribuição Animal , Animais , Animais Domésticos/genética , Ásia , Domesticação , Pool Gênico , Geografia , Funções Verossimilhança , Aves Domésticas/genética , Seleção Genética
6.
Asian-Australas J Anim Sci ; 32(4): 467-476, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30145876

RESUMO

OBJECTIVE: This research was conducted to study the genetic diversity in several Indonesian cattle breeds using microsatellite markers to classify the Indonesian cattle breeds. METHODS: A total of 229 DNA samples from of 10 cattle breeds were used in this study. The polymerase chain reaction process was conducted using 12 labeled primers. The size of allele was generated using the multiplex DNA fragment analysis. The POPGEN and CERVUS programs were used to obtain the observed number of alleles, effective number of alleles, observed heterozygosity value, expected heterozygosity value, allele frequency, genetic differentiation, the global heterozygote deficit among breeds, and the heterozygote deficit within the breed, gene flow, Hardy-Weinberg equilibrium, and polymorphism information content values. The MEGA program was used to generate a dendrogram that illustrates the relationship among cattle population. Bayesian clustering assignments were analyzed using STRUCTURE program. The GENETIX program was used to perform the correspondence factorial analysis (CFA). The GENALEX program was used to perform the principal coordinates analysis (PCoA) and analysis of molecular variance. The principal component analysis (PCA) was performed using adegenet package of R program. RESULTS: A total of 862 alleles were detected in this study. The INRA23 allele 205 is a specific allele candidate for the Sumba Ongole cattle, while the allele 219 is a specific allele candidate for Ongole Grade. This study revealed a very close genetic relationship between the Ongole Grade and Sumba Ongole cattle and between the Madura and Pasundan cattle. The results from the CFA, PCoA, and PCA analysis in this study provide scientific evidence regarding the genetic relationship between Banteng and Bali cattle. According to the genetic relationship, the Pesisir cattle were classified as Bos indicus cattle. CONCLUSION: All identified alleles in this study were able to classify the cattle population into three clusters i.e. Bos taurus cluster (Simmental Purebred, Simmental Crossbred, and Holstein Friesian cattle); Bos indicus cluster (Sumba Ongole, Ongole Grade, Madura, Pasundan, and Pesisir cattle); and Bos javanicus cluster (Banteng and Bali cattle).

7.
Asian-Australas J Anim Sci ; 29(2): 176-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26732442

RESUMO

A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia.

8.
BMC Proc ; 5 Suppl 4: S37, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21645318

RESUMO

BACKGROUND: In previous studies, the Mx Gene has been demonstrated to confer positive anti viral responses in chicken. The amino acid variation of Asn (allele A) at position 631 was specific to positive antiviral Mx/resistant, while, that of Ser (allele G) was specific to negative Mx/susceptible. This research was aimed at selecting one of the native chicken breeds which was found out to be resistant to avian influenza using molecular technique. The selected breed will then be used as the base population to improve native chicken breed in Indonesia. METHODS: Marker Assisted Selection (MAS) method was used in this research to accelerate the selection process, since the disease resistance had low heritability value. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique used to select the genotype of Mx++, Mx+- and Mx-- that corresponded to the positive antiviral activity (Mx++), or those which had positive or negative activity (Mx+-) and negative antiviral activity (Mx--). There were 200 native hens and 40 cocks used in this experiment. Allele frequency of Mx Gene was calculated. The productivity indicators such as age at first laying, egg weight and hen weight at first laying and egg production were also measured. The chicken that had Mx++ and Mx+- genotypes, were selected to produce offspring. RESULTS: Result showed that the frequency of the resistant allele (Mx+) was 65% and 60% in laying hens and in cocks, respectively, while the frequency of the susceptible allele (Mx-) was 35% and 40% in hens and cocks, resepctively. Age, egg weight and hen weight at first laying and egg production for susceptible genotype were slightly better than for the resistant genotype which were 172,41 VS 178,81 days; 33,94 VS 32,84 g; 1450 VS 1439 g and 54,32 VS 48,30 %, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA