Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Biol Reprod ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702845

RESUMO

Betaine has important roles in preimplantation mouse embryos, including as an organic osmolyte that functions in cell volume regulation in the early preimplantation stages and as a donor to the methyl pool in blastocysts. The origin of betaine in oocytes and embryos was largely unknown. Here, we found that betaine was present from the earliest stage of growing oocytes. Neither growing oocytes nor early preantral follicles could take up betaine, but antral follicles were able to transport betaine and supply the enclosed oocyte. Betaine is synthesized by choline dehydrogenase, and female mice lacking Chdh did not have detectable betaine in their oocytes or early embryos. Supplementing betaine in their drinking water restored betaine in the oocyte only when supplied during the final stages of antral follicle development but not earlier in folliculogenesis. Together with the transport results, this implies that betaine can only be exogenously supplied during the final stages of oocyte growth. Previous work showed that the amount of betaine in the oocyte increases sharply during meiotic maturation due to upregulated activity of choline dehydrogenase within the oocyte. This betaine present in mature eggs was retained after fertilization until the morula stage. There was no apparent role for betaine uptake via the SIT1 (SLC6A20) betaine transporter that is active at the 1- and 2-cell stages. Instead, betaine was apparently retained because its major route of efflux, the volume-sensitive organic osmolyte - anion channel, remained inactive, even though it is expressed and capable of being activated by a cell volume increase.

2.
medRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633769

RESUMO

Ancestrally admixed populations are underrepresented in genetic studies of complex diseases, which are still dominated by European-descent populations. This is relevant not only from a representation standpoint but also because of admixed populations' unique features, including being enriched for rare variants, for which effect sizes are disproportionately larger than common polymorphisms. Furthermore, results from these populations may be generalizable to other populations. The South African Cape Coloured (SACC) population is genetically admixed, with one of the highest prevalences of fetal alcohol spectrum disorders (FASD) worldwide. We profiled its admixture and examined associations between ancestry profiles and FASD outcomes using two longitudinal birth cohorts ( N =308 mothers, 280 children) designed to examine effects of prenatal alcohol exposure on development. Participants were genotyped via MEGA-ex array to capture common and rare variants. Rare variants were overrepresented in our SACC cohorts, with numerous polymorphisms being monomorphic in other reference populations (e.g., ∼30,000 and ∼221,000 variants in gnomAD European and Asian populations, respectively). The cohorts showed global African (51%; Bantu and San); European (26%; Northern/Western); South Asian (18%); and East Asian (5%; largely Southern regions) ancestries. The cohorts exhibited high rates of homozygosity (6%), with regions of homozygosity harboring more deleterious variants when lying within African local-ancestry genomic segments. Both maternal and child ancestry profiles were associated with FASD risk and altered severity of prenatal alcohol exposure-related cognitive deficits in the child. Our findings indicate that the SACC population may be a valuable asset to identify novel disease-associated genetic loci for FASD and other diseases.

3.
Nutrients ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257153

RESUMO

Dietary choline is needed to maintain normal health, including normal liver function in adults. Fatty liver induced by a choline-deficient diet has been consistently observed in human and animal studies. The effect of insufficient choline intake on hepatic fat accumulation is specific and reversible when choline is added to the diet. Choline requirements are higher in women during pregnancy and lactation than in young non-pregnant women. We reviewed the evidence on whether choline derived from the maternal diet is necessary for maintaining normal liver function in the fetus and breastfed infants. Studies have shown that choline from the maternal diet is actively transferred to the placenta, fetal liver, and human milk. This maternal-to-child gradient can cause depletion of maternal choline stores and increase the susceptibility of the mother to fatty liver. Removing choline from the diet of pregnant rats causes fatty liver both in the mother and the fetus. The severity of fatty liver in the offspring was found to correspond to the severity of fatty liver in the respective mothers and to the duration of feeding the choline-deficient diet to the mother. The contribution of maternal choline intake in normal liver function of the offspring can be explained by the role of phosphatidylcholine in lipid transport and as a component of cell membranes and the function of choline as a methyl donor that enables synthesis of phosphatidylcholine in the liver. Additional evidence is needed on the effect of choline intake during pregnancy and lactation on health outcomes in the fetus and infant. Most pregnant and lactating women are currently not achieving the adequate intake level of choline through the diet. Therefore, public health policies are needed to ensure sufficient choline intake through adding choline to maternal multivitamin supplements.


Assuntos
Colina , Fígado Gorduroso , Adulto , Lactente , Gravidez , Humanos , Feminino , Animais , Ratos , Lactação , Feto , Política Pública , Mães , Fosfatidilcolinas
4.
J Neurodev Disord ; 14(1): 59, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526961

RESUMO

BACKGROUND: Fetal alcohol spectrum disorder (FASD) is a lifelong condition. Early interventions targeting core neurocognitive deficits have the potential to confer long-term neurodevelopmental benefits. Time-targeted choline supplementation is one such intervention that has been shown to provide neurodevelopmental benefits that emerge with age during childhood. We present a long-term follow-up study evaluating the neurodevelopmental effects of early choline supplementation in children with FASD approximately 7 years on average after an initial efficacy trial. METHODS: The initial study was a randomized, double-blind, placebo-controlled trial of choline vs. placebo in 2.5 to 5 year olds with FASD. Participants in this long-term follow-up study include 18 children (9 placebo; 9 choline) seen 7 years on average following initial trial completion. The mean age at follow-up was 11.0 years old. Diagnoses were 28% fetal alcohol syndrome (FAS), 28% partial FAS, and 44% alcohol-related neurodevelopmental disorder. The follow-up included measures of executive functioning and an MRI scan. RESULTS: Children who received choline had better performance on several tasks of lower-order executive function (e.g., processing speed) and showed higher white matter microstructure organization (i.e., greater axon coherence) in the splenium of the corpus callosum compared to the placebo group. CONCLUSIONS: These preliminary findings, although exploratory at this stage, highlight potential long-term benefits of choline as a neurodevelopmental intervention for FASD and suggest that choline may affect white matter development, representing a potential target of choline in this population. TRIAL REGISTRATION: Prior to enrollment, this trial was registered with clinicaltrials.gov ( NCT01149538 ) on June 23, 2010.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Substância Branca , Criança , Gravidez , Feminino , Humanos , Pré-Escolar , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Colina/uso terapêutico , Corpo Caloso/diagnóstico por imagem , Seguimentos , Substância Branca/diagnóstico por imagem
5.
Adv Nutr ; 13(4): 1324-1393, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35802522

RESUMO

The ASN Board of Directors appointed the Nutrition Research Task Force to develop a report on scientific methods used in nutrition science to advance discovery, interpretation, and application of knowledge in the field. The genesis of this report was growing concern about the tone of discourse among nutrition professionals and the implications of acrimony on the productive study and translation of nutrition science. Too often, honest differences of opinion are cast as conflicts instead of areas of needed collaboration. Recognition of the value (and limitations) of contributions from well-executed nutrition science derived from the various approaches used in the discipline, as well as appreciation of how their layering will yield the strongest evidence base, will provide a basis for greater productivity and impact. Greater collaborative efforts within the field of nutrition science will require an understanding that each method or approach has a place and function that should be valued and used together to create the nutrition evidence base. Precision nutrition was identified as an important emerging nutrition topic by the preponderance of task force members, and this theme was adopted for the report because it lent itself to integration of many approaches in nutrition science. Although the primary audience for this report is nutrition researchers and other nutrition professionals, a secondary aim is to develop a document useful for the various audiences that translate nutrition research, including journalists, clinicians, and policymakers. The intent is to promote accurate, transparent, verifiable evidence-based communication about nutrition science. This will facilitate reasoned interpretation and application of emerging findings and, thereby, improve understanding and trust in nutrition science and appropriate characterization, development, and adoption of recommendations.


Assuntos
Ciências da Nutrição , Projetos de Pesquisa , Comitês Consultivos , Humanos
6.
J Pediatr Gastroenterol Nutr ; 75(4): 521-528, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666855

RESUMO

OBJECTIVES: Protein overfeeding in infants can have negative effects, such as diabetes and childhood obesity; key to reducing protein intake from formula is improving protein quality. The impact of a new infant formula [study formula (SF)] containing alpha-lactalbumin, lactoferrin, partially hydrolyzed whey, and whole milk on growth and tolerance compared to a commercial formula (CF) and a human milk reference arm was evaluated. METHODS: This randomized, double-blind trial included healthy, singleton, term infants, enrollment age ≤14 days. Primary outcome was mean daily weight gain. Secondary outcomes were anthropometrics, formula intake, serum amino acids, adverse events, gastrointestinal characteristics, and general disposition. RESULTS: Non-inferiority was demonstrated. There were no differences between the formula groups for z scores over time. Formula intake [-0.33 oz/kg/day, 95% confidence interval (CI): -0.66 to -0.01, P = 0.05] and mean protein intake (-0.13 g/kg/day, 95% CI: -0.26 to 0.00, P = 0.05) were lower in the SF infants, with higher serum essential amino acid concentrations (including tryptophan) compared to the CF infants. Energetic efficiency was 14.0% (95% CI: 8.3%, 19.7%), 13.0% (95% CI: 6.0%, 20.0%), and 18.1% (95% CI: 9.4%, 26.8%) higher for weight, length, and head circumference, respectively, in SF infants compared to the CF infants. SF infants had significantly fewer spit-ups and softer stool consistency than CF infants. CONCLUSIONS: The SF resulted in improved parent-reported gastrointestinal tolerance and more efficient growth with less daily formula and protein intake supporting that this novel formula may potentially reduce the metabolic burden of protein overfeeding associated with infant formula.


Assuntos
Fórmulas Infantis , Obesidade Infantil , Criança , Humanos , Lactente , Fórmulas Infantis/química , Lactalbumina/análise , Lactoferrina , Leite Humano/química , Triptofano/análise
7.
Psychol Med ; 52(14): 3019-3028, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33491615

RESUMO

BACKGROUND: Prenatal choline is a key nutrient, like folic acid and vitamin D, for fetal brain development and subsequent mental function. We sought to determine whether effects of higher maternal plasma choline concentrations on childhood attention and social problems, found in an initial clinical trial of choline supplementation, are observed in a second cohort. METHODS: Of 183 mothers enrolled from an urban safety net hospital clinic, 162 complied with gestational assessments and brought their newborns for study at 1 month of age; 83 continued assessments through 4 years of age. Effects of maternal 16 weeks of gestation plasma choline concentrations ⩾7.07 µM, 1 s.d. below the mean level obtained with supplementation in the previous trial, were compared to lower levels. The Attention Problems and Withdrawn Syndrome scales on Child Behavior Checklist 1½-5 were the principal outcomes. RESULTS: Higher maternal plasma choline was associated with lower mean Attention Problems percentiles in children, and for male children, with lower Withdrawn percentiles. Higher plasma choline concentrations also reduced Attention Problems percentiles for children of mothers who used cannabis during gestation as well as children of mothers who had gestational infection. CONCLUSIONS: Prenatal choline's positive associations with early childhood behaviors are found in a second, more diverse cohort. Increases in attention problems and social withdrawal in early childhood are associated with later mental illnesses including attention deficit disorder and schizophrenia. Choline concentrations in the pregnant women in this study replicate other research findings suggesting that most pregnant women do not have adequate choline in their diets.


Assuntos
Cannabis , Alucinógenos , Efeitos Tardios da Exposição Pré-Natal , Criança , Humanos , Gravidez , Masculino , Recém-Nascido , Feminino , Pré-Escolar , Colina , Desenvolvimento Infantil , Desenvolvimento Fetal , Problemas Sociais , Efeitos Tardios da Exposição Pré-Natal/epidemiologia
8.
Schizophr Bull ; 47(4): 886-887, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940629

RESUMO

These initial data suggest that with prenatal vitamins and choline supplements, we might decrease one risk factor associated with poorer health outcomes disproportionally affecting Black families, ie, preterm birth. Dissemination of this research fulfills the principle of Justice in the Belmont Report, to ensure that participants from different racial, ethnic and socioeconomic groups receive benefits from research directed to their specific problems.


Assuntos
Nascimento Prematuro , Negro ou Afro-Americano , Feminino , Hispânico ou Latino , Humanos , Recém-Nascido , Gravidez , Fatores de Risco
9.
Am J Clin Nutr ; 114(2): 617-627, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33876196

RESUMO

BACKGROUND: The essential nutrient choline provides one-carbon units for metabolite synthesis and epigenetic regulation in tissues including brain. Dietary choline intake is often inadequate, and higher intakes are associated with improved cognitive function. OBJECTIVE: Choline supplements confer cognitive improvement for those diagnosed with fetal alcohol spectrum disorder (FASD), a common set of neurodevelopmental impairments; however, the effect sizes have been modest. In this retrospective analysis, we report that genetic polymorphisms affecting choline utilization are associated with cognitive improvement following choline intervention. METHODS: Fifty-two children from the upper midwestern United States and diagnosed with FASD, ages 2-5 y, were randomly assigned to receive choline (500 mg/d; n = 26) or placebo (n = 26) for 9 mo, and were genotyped for 384 choline-related single nucleotide polymorphisms (SNPs). Memory and cognition were assessed at enrollment, study terminus, and at 4-y follow-up for a subset. RESULTS: When stratified by intervention (choline vs. placebo), 14-16 SNPs within the cellular choline transporter gene solute carrier family 44 member 1 (SLC44A1) were significantly associated with performance in an elicited imitation sequential memory task, wherein the effect alleles were associated with the greatest pre-/postintervention improvement. Of these, rs3199966 is a structural variant (S644A) and rs2771040 is a single-nucleotide variant within the 3' untranslated region of the plasma membrane isoform. An additive genetic model best explained the genotype associations. Lesser associations were observed for cognitive outcome and polymorphisms in flavin monooxygenase-3 (FMO3), methylenetetrahydrofolate dehydrogenase-1 (MTHFD1), fatty acid desaturase-2 (FADS2), and adiponectin receptor 1 (ADIPOR1). CONCLUSIONS: These SLC44A1 variants were previously associated with greater vulnerability to choline deficiency. Our data potentially support the use of choline supplements to improve cognitive function in individuals diagnosed with FASD who carry these effect alleles. Although these findings require replication in both retrospective and prospective confirmatory trials, they emphasize the need to incorporate similar genetic analyses of choline-related polymorphisms in other FASD-choline trials, and to test for similar associations within the general FASD population. This trial was registered at www.clinicaltrials.gov as NCT01149538.


Assuntos
Antígenos CD/metabolismo , Colina/farmacologia , Suplementos Nutricionais , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Polimorfismo de Nucleotídeo Único , Administração Oral , Antígenos CD/genética , Pré-Escolar , Colina/administração & dosagem , Cognição , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/patologia , Genótipo , Humanos , Masculino , Proteínas de Transporte de Cátions Orgânicos/genética , Estudos Retrospectivos
10.
Am J Clin Nutr ; 113(6): 1670-1678, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33668062

RESUMO

BACKGROUND: Choline deficiency has numerous negative health consequences; although the preponderance of the US population consumes less than the recommended Adequate Intake (AI), clinical assessment of choline status is difficult. Further, several pathways involved in primary metabolism of choline are estrogen-sensitive and the AI for premenopausal women is lower than that for men. OBJECTIVES: We sought to determine whether in vivo magnetic resonance spectroscopy (MRS) of liver and/or isotope-dilution MS of plasma could identify biomarkers reflective of choline intake (preregistered primary outcomes 1 and 2, secondary outcome 1). Determination of whether biomarker concentrations showed sex dependence was a post hoc outcome. This substudy is a component of a larger project to identify a clinically useful biomarker panel for assessment of choline status. METHODS: In a double-blind, randomized, crossover trial, people consumed 3 diets, representative of ∼100%, ∼50%, and ∼25% of the choline AI, for 2-wk periods. We measured the concentrations of choline and several metabolites using 1H single-voxel MRS of liver in vivo and using 2H-labeled isotope dilution MS of several choline metabolites in extracted plasma. RESULTS: Plasma concentrations of 2H9-choline, unlabeled betaine, and 2H9-betaine, and the isotopic enrichment ratio (IER) of betaine showed highly significant between-diet effects (q < 0.0001), with unlabeled betaine concentration decreasing 32% from highest to lowest choline intake. Phosphatidylcholine IER was marginally significant (q = 0.03). Unlabeled phosphatidylcholine plasma concentrations did not show between-diet effects (q = 0.34). 2H9 (trimethyl)-phosphatidylcholine plasma concentrations (q = 0.07) and MRS-measured total soluble choline species liver concentrations (q = 0.07) showed evidence of between-diet effects but this was not statistically significant. CONCLUSIONS: Although MRS is a more direct measure of choline status, variable spectral quality limited interpretation. MS analysis of plasma showed clear correlation of plasma betaine concentration, but not plasma phosphatidylcholine concentration, with dietary choline intake. Plasma betaine concentrations also correlate with sex status (premenopausal women, postmenopausal women, men).This trial was registered at clinicaltrials.gov as NCT03726671.


Assuntos
Colina/administração & dosagem , Colina/sangue , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Betaína/sangue , Estudos Cross-Over , Método Duplo-Cego , Humanos
11.
Schizophr Bull ; 47(4): 896-905, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33184653

RESUMO

Black Americans have increased risk for schizophrenia and other mental illnesses with prenatal origins. Prenatal choline promotes infant brain development and behavioral outcomes, but choline has not been specifically assessed in Black Americans. Pregnant women (N = 183, N = 25 Black Americans) enrolled in a study of prenatal stressors and interactions with prenatal choline. Black American women had lower 16-week gestation plasma choline than Whites. Lower choline was not related to obesity, income, or metabolic genotypes. Pregnant women in rural Uganda have higher choline levels than Black American women. Black Americans' lower choline was associated with higher hair cortisol, indicative of higher stress. Lower maternal choline was associated with offsprings' lower gestational age at birth and with decreased auditory P50 inhibition, a marker of inhibitory neuron development. Behavioral development was assessed on the Infant Behavior Questionnaire-R-SF (IBQ-R) at 3 months. Lower Black American maternal gestational choline was associated with lower infant IBQ-R Orienting/Regulation, indicating decreased attention and relation to caregivers. Additional evidence for developmental effects of choline in Black Americans comes from a randomized clinical trial of gestational phosphatidylcholine supplementation versus placebo that included 15 Black Americans. Phosphatidylcholine increased gestational age at birth and newborn P50 inhibition and decreased Social Withdrawn and Attention problems at 40 months of age in Black Americans' offspring compared to placebo. Inhibitory and behavioral deficits associated with lower prenatal choline in offspring of Black American women indicate potential developmental predispositions to later mental illnesses that might be ameliorated by prenatal choline or phosphatidylcholine supplementation.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Colina/análise , Idade Gestacional , Transtornos Mentais/etnologia , Efeitos Tardios da Exposição Pré-Natal/etnologia , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez
12.
Diabetes Care ; 43(11): 2840-2846, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900787

RESUMO

OBJECTIVE: To examine the association between dietary intake of choline and betaine and the risk of type 2 diabetes. RESEARCH DESIGN AND METHODS: Among 13,440 Atherosclerosis Risk in Communities (ARIC) study participants, the prospective longitudinal association between dietary choline and betaine intake and the risk of type 2 diabetes was assessed using interval-censored Cox proportional hazards and logistic regression models adjusted for baseline potential confounding variables. RESULTS: Among 13,440 participants (55% women, mean age 54 [SD 7.4] years), 1,396 developed incident type 2 diabetes during median follow-up of 9 years from 1987 to 1998. There was no statistically significant association between every 1-SD increase in dietary choline and risk of type 2 diabetes (hazard ratio [HR] 1.01 [95% CI 0.87, 1.16]) nor between dietary betaine intake and the risk of type 2 diabetes (HR 1.01 [0.94, 1.10]). Those in the highest quartile of dietary choline intake did not have a statistically significant higher risk of type 2 diabetes than those in the lowest choline quartile (HR 1.09 [0.84, 1.42]); similarly, dietary betaine intake was not associated with the risk of type 2 diabetes comparing the highest quartile to the lowest (HR 1.06 [0.87, 1.29]). Among women, there was a higher risk of type 2 diabetes, comparing the highest to lowest dietary choline quartile (HR 1.54 [1.06, 2.25]), while in men, the association was null (HR 0.82 [0.57, 1.17]). Nevertheless, there was a nonsignificant interaction between high choline intake and sex on the risk of type 2 diabetes (P = 0.07). The results from logistic regression were similar. CONCLUSIONS: Overall and among male participants, dietary choline or betaine intakes were not associated with the risk of type 2 diabetes. Among female participants, there was a trend for a modestly higher risk of type 2 diabetes among those with the highest as compared with the lowest quartile of dietary choline intake. Our study should inform clinical trials on dietary choline and betaine supplementation in relationship with the risk of type 2 diabetes.


Assuntos
Betaína , Colina , Diabetes Mellitus Tipo 2/epidemiologia , Dieta , Ingestão de Alimentos , Feminino , Seguimentos , Humanos , Modelos Logísticos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco , Autorrelato , Fatores Sexuais , Estados Unidos/epidemiologia
14.
J Neurodev Disord ; 12(1): 9, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164522

RESUMO

BACKGROUND: Despite the high prevalence of fetal alcohol spectrum disorder (FASD), there are few interventions targeting its core neurocognitive and behavioral deficits. FASD is often conceptualized as static and permanent, but interventions that capitalize on brain plasticity and critical developmental windows are emerging. We present a long-term follow-up study evaluating the neurodevelopmental effects of choline supplementation in children with FASD 4 years after an initial efficacy trial. METHODS: The initial study was a randomized, double-blind, placebo-controlled trial of choline vs. placebo in 2-5-year-olds with FASD. Participants include 31 children (16 placebo; 15 choline) seen 4 years after trial completion. The mean age at follow-up was 8.6 years. Diagnoses were 12.9% fetal alcohol syndrome (FAS), 41.9% partial FAS, and 45.1% alcohol-related neurodevelopmental disorder. The follow-up included measures of intelligence, memory, executive functioning, and behavior. RESULTS: Children who received choline had higher non-verbal intelligence, higher visual-spatial skill, higher working memory ability, better verbal memory, and fewer behavioral symptoms of attention deficit hyperactivity disorder than the placebo group. No differences were seen for verbal intelligence, visual memory, or other executive functions. CONCLUSIONS: These data support choline as a potential neurodevelopmental intervention for FASD and highlight the need for long-term follow-up to capture treatment effects on neurodevelopmental trajectories. TRIAL REGISTRATION: ClinicalTrials.Gov #NCT01149538; Registered: June 23, 2010; first enrollment July 2, 2010.


Assuntos
Colina/uso terapêutico , Cognição/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Nootrópicos/uso terapêutico , Pré-Escolar , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Inteligência/efeitos dos fármacos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico
15.
Annu Rev Food Sci Technol ; 11: 71-92, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31928426

RESUMO

People differ in their requirements for and responses to nutrients and bioactive molecules in the diet. Many inputs contribute to metabolic heterogeneity (including variations in genetics, epigenetics, microbiome, lifestyle, diet intake, and environmental exposure). Precision nutrition is not about developing unique prescriptions for individual people but rather about stratifying people into different subgroups of the population on the basis of biomarkers of the above-listed sources of metabolic variation and then using this stratification to better estimate the different subgroups' dietary requirements, thereby enabling better dietary recommendations and interventions. The hope is that we will be able to subcategorize people into ever-smaller groups that can be targeted in terms of recommendations, but we will never achieve this at the individual level, thus, the choice of precision nutrition rather than personalized nutrition to designate this new field. This review focuses mainly on genetically related sources of metabolic heterogeneity and identifies challenges that need to be overcome to achieve a full understanding of the complex interactions between the many sources of metabolic heterogeneity that make people differ from one another in their requirements for and responses to foods. It also discusses the commercial applications of precision nutrition.


Assuntos
Estado Nutricional , Medicina de Precisão , Exposição Ambiental , Epigênese Genética , Variação Genética , Humanos , Nutrigenômica
16.
J Diet Suppl ; 17(6): 733-752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31385730

RESUMO

Choline is an essential nutrient for proper liver, muscle, and brain functions as well as for lipid metabolism and cellular membrane composition and repair. Humans can produce small amounts of choline via the hepatic phosphatidylethanolamine N-methyltransferase pathway; however, most individuals must consume this vitamin through the diet to prevent deficiency. An individual's dietary requirement for choline is dependent on common genetic variants in genes required for choline, folate, and one-carbon metabolism. Both the American Academy of Pediatrics and American Medical Association have recently reinforced the importance of maternal choline intake during pregnancy and lactation and recognize that failure to provide choline and other key essential nutrients during the first 1,000 days postconception may result in lifelong deficits in brain function despite subsequent nutrient repletion. Given that dietary intake for the majority of the US population, including subpopulations such as pregnant women, women of childbearing age, and vegetarians, falls well below the current adequate intake, there is a need to develop better policies and improve consumer education around the importance of this essential nutrient for human health. This comprehensive expert review summarizes the current scientific evidence on choline and health in relation to interests of obstetricians and gynecologists.


Assuntos
Colina , Fenômenos Fisiológicos da Nutrição Materna , Necessidades Nutricionais , Dieta , Feminino , Ácido Fólico , Humanos , Gravidez , Vitaminas
17.
Adv Nutr ; 11(2): 200-215, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31386148

RESUMO

While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research.


Assuntos
Biomarcadores/análise , Dieta , Metabolômica/métodos , Biomarcadores/sangue , Biomarcadores/urina , Alimentos , Genômica , Humanos , Metagenômica , Fenômenos Fisiológicos da Nutrição/genética , Ciências da Nutrição/métodos , Estado Nutricional , Reprodutibilidade dos Testes
18.
Nutrients ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547446

RESUMO

Higher dietary protein intake is increasingly recommended for the elderly; however, high protein diets have also been linked to increased cardiovascular disease (CVD) risk. Trimethylamine-N-oxide (TMAO) is a bacterial metabolite derived from choline and carnitine abundant from animal protein-rich foods. TMAO may be a novel biomarker for heightened CVD risk. The purpose of this study was to assess the impact of a high protein diet on TMAO. Healthy men (74.2 ± 3.6 years, n = 29) were randomised to consume the recommended dietary allowance of protein (RDA: 0.8 g protein/kg bodyweight/day) or twice the RDA (2RDA) as part of a supplied diet for 10 weeks. Fasting blood samples were collected pre- and post-intervention for measurement of TMAO, blood lipids, glucose tolerance, insulin sensitivity, and inflammatory biomarkers. An oral glucose tolerance test was also performed. In comparison with RDA, the 2RDA diet increased circulatory TMAO (p = 0.002) but unexpectedly decreased renal excretion of TMAO (p = 0.003). LDL cholesterol was increased in 2RDA compared to RDA (p = 0.049), but no differences in other biomarkers of CVD risk and insulin sensitivity were evident between groups. In conclusion, circulatory TMAO is responsive to changes in dietary protein intake in older healthy males.


Assuntos
Dieta Rica em Proteínas/efeitos adversos , Proteínas Alimentares/efeitos adversos , Metilaminas/sangue , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/etiologia , LDL-Colesterol/sangue , Jejum/sangue , Microbioma Gastrointestinal , Humanos , Resistência à Insulina , Lipídeos/sangue , Masculino , Recomendações Nutricionais , Fatores de Risco
19.
FASEB J ; 33(8): 9194-9209, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31091977

RESUMO

Adequate supply of choline, an essential nutrient, is necessary to support proper brain development. Whether prenatal choline availability plays a role in development of the visual system is currently unknown. In this study, we addressed the role of in utero choline supply for the development and later function of the retina in a mouse model. We lowered choline availability in the maternal diet during pregnancy and assessed proliferative and differentiation properties of retinal progenitor cells (RPCs) in the developing prenatal retina, as well as visual function in adult offspring. We report that low choline availability during retinogenesis leads to persistent retinal cytoarchitectural defects, ranging from focal lesions with displacement of retinal neurons into subretinal space to severe hypocellularity and ultrastructural defects in photoreceptor organization. We further show that low choline availability impairs timely differentiation of retinal neuronal cells, such that the densities of early-born retinal ganglion cells, amacrine and horizontal cells, as well as cone photoreceptor precursors, are reduced in low choline embryonic d 17.5 retinas. Maintenance of higher proportions of RPCs that fail to exit the cell cycle underlies aberrant neuronal differentiation in low choline embryos. Increased RPC cell cycle length, and associated reduction in neurofibromin 2/Merlin protein, an upstream regulator of the Hippo signaling pathway, at least in part, explain aberrant neurogenesis in low choline retinas. Furthermore, we find that animals exposed to low choline diet in utero exhibit a significant degree of intraindividual variation in vision, characterized by marked functional discrepancy between the 2 eyes in individual animals. Together, our findings demonstrate, for the first time, that choline availability plays an essential role in the regulation of temporal progression of retinogenesis and provide evidence for the importance of adequate supply of choline for proper development of the visual system.-Trujillo-Gonzalez, I., Friday, W. B., Munson, C. A., Bachleda, A., Weiss, E. R., Alam, N. M., Sha, W., Zeisel, S. H., Surzenko, N. Low availability of choline in utero disrupts development and function of the retina.


Assuntos
Deficiência de Colina/embriologia , Retina/anormalidades , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Colina/administração & dosagem , Colina/metabolismo , Deficiência de Colina/fisiopatologia , Dieta , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neurogênese/fisiologia , Gravidez , Retina/embriologia , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
20.
Front Genet ; 10: 200, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936893

RESUMO

Nutrients and food-derived bioactive molecules must transit complex metabolic pathways, and these pathways vary between people. Metabolic heterogeneity is caused by genetic variation, epigenetic variation, differences in microbiome composition and function, lifestyle differences and by variation in environmental exposures. This review discusses a number of these sources of metabolic heterogeneity and presents some of the research investments that will be needed to make applications of precision nutrition practical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA