Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Biomed Semantics ; 15(1): 13, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39080729

RESUMO

BACKGROUND: Identifying chemical mentions within the Alzheimer's and dementia literature can provide a powerful tool to further therapeutic research. Leveraging the Chemical Entities of Biological Interest (ChEBI) ontology, which is rich in hierarchical and other relationship types, for entity normalization can provide an advantage for future downstream applications. We provide a reproducible hybrid approach that combines an ontology-enhanced PubMedBERT model for disambiguation with a dictionary-based method for candidate selection. RESULTS: There were 56,553 chemical mentions in the titles of 44,812 unique PubMed article abstracts. Based on our gold standard, our method of disambiguation improved entity normalization by 25.3 percentage points compared to using only the dictionary-based approach with fuzzy-string matching for disambiguation. For the CRAFT corpus, our method outperformed baselines (maximum 78.4%) with a 91.17% accuracy. For our Alzheimer's and dementia cohort, we were able to add 47.1% more potential mappings between MeSH and ChEBI when compared to BioPortal. CONCLUSION: Use of natural language models like PubMedBERT and resources such as ChEBI and PubChem provide a beneficial way to link entity mentions to ontology terms, while further supporting downstream tasks like filtering ChEBI mentions based on roles and assertions to find beneficial therapies for Alzheimer's and dementia.


Assuntos
Doença de Alzheimer , Demência , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Pesquisa Translacional Biomédica , Processamento de Linguagem Natural , Ontologias Biológicas
2.
Genome Res ; 34(6): 837-850, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38977309

RESUMO

Studies on human parathyroids are generally limited to hyperfunctioning glands owing to the difficulty in obtaining normal human tissue. We therefore obtained non-human primate (NHP) parathyroids to provide a suitable alternative for sequencing that would bear a close semblance to human organs. Single-cell RNA expression analysis of parathyroids from four healthy adult M. mulatta reveals a continuous trajectory of epithelial cell states. Pseudotime analysis based on transcriptomic signatures suggests a progression from GCM2 hi progenitors to mature parathyroid hormone (PTH)-expressing epithelial cells with increasing core mitochondrial transcript abundance along pseudotime. We sequenced, as a comparator, four histologically characterized hyperfunctioning human parathyroids with varying oxyphil and chief cell abundance and leveraged advanced computational techniques to highlight similarities and differences from non-human primate parathyroid expression dynamics. Predicted cell-cell communication analysis reveals abundant endothelial cell interactions in the parathyroid cell microenvironment in both human and NHP parathyroid glands. We show abundant RARRES2 transcripts in both human adenoma and normal primate parathyroid cells and use coimmunostaining to reveal high levels of RARRES2 protein (also known as chemerin) in PTH-expressing cells, which could indicate that RARRES2 plays an unrecognized role in parathyroid endocrine function. The data obtained are the first single-cell RNA transcriptome to characterize nondiseased parathyroid cell signatures and to show a transcriptomic progression of cell states within normal parathyroid glands, which can be used to better understand parathyroid cell biology.


Assuntos
Macaca mulatta , Glândulas Paratireoides , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Glândulas Paratireoides/metabolismo , Animais , Transcriptoma , Quimiocinas/metabolismo , Quimiocinas/genética , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/genética , Comunicação Celular , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Transcrição Gênica
3.
Artigo em Inglês | MEDLINE | ID: mdl-39059466

RESUMO

BACKGROUND: While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS: We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In the tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS: Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala, and tau binding in these regions was associated with mood symptoms. Across amygdalar divisions, amyloid-positive individuals had relatively higher regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex, but medial amygdala to retrosplenial cortex was lower. Medial amygdala to retrosplenial connectivity was negatively associated with anxiety symptoms, as was retrosplenial tau. CONCLUSIONS: Our findings suggest that preclinical tau deposition in the amygdala and associated changes in functional connectivity may relate to early mood symptoms in AD.

4.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895308

RESUMO

BACKGROUND: While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS: We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS: Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an interaction by amyloid group between tau binding in the medial and lateral amygdala and anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety symptoms (rs=-0.103, p=0.015). CONCLUSIONS: Our findings suggest that preclinical tau deposition in the amygdala may result in meaningful changes in functional connectivity which may predispose patients to mood symptoms.

5.
Viruses ; 16(2)2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400021

RESUMO

Seasonal infection rates of individual viruses are influenced by synergistic or inhibitory interactions between coincident viruses. Endemic patterns of SARS-CoV-2 and influenza infection overlap seasonally in the Northern hemisphere and may be similarly influenced. We explored the immunopathologic basis of SARS-CoV-2 and influenza A (H1N1pdm09) interactions in Syrian hamsters. H1N1 given 48 h prior to SARS-CoV-2 profoundly mitigated weight loss and lung pathology compared to SARS-CoV-2 infection alone. This was accompanied by the normalization of granulocyte dynamics and accelerated antigen-presenting populations in bronchoalveolar lavage and blood. Using nasal transcriptomics, we identified a rapid upregulation of innate and antiviral pathways induced by H1N1 by the time of SARS-CoV-2 inoculation in 48 h dual-infected animals. The animals that were infected with both viruses also showed a notable and temporary downregulation of mitochondrial and viral replication pathways. Quantitative RT-PCR confirmed a decrease in the SARS-CoV-2 viral load and lower cytokine levels in the lungs of animals infected with both viruses throughout the course of the disease. Our data confirm that H1N1 infection induces rapid and transient gene expression that is associated with the mitigation of SARS-CoV-2 pulmonary disease. These protective responses are likely to begin in the upper respiratory tract shortly after infection. On a population level, interaction between these two viruses may influence their relative seasonal infection rates.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Cricetinae , Animais , Humanos , COVID-19/patologia , Mesocricetus , SARS-CoV-2 , Influenza Humana/patologia , Pulmão , Modelos Animais de Doenças
6.
Res Sq ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824778

RESUMO

Background: Identifying chemical mentions within the Alzheimer's and dementia literature can provide a powerful tool to further therapeutic research. Leveraging the Chemical Entities of Biological Interest (ChEBI) ontology, which is rich in hierarchical and other relationship types, for entity normalization can provide an advantage for future downstream applications. We provide a reproducible hybrid approach that combines an ontology-enhanced PubMedBERT model for disambiguation with a dictionary-based method for candidate selection. Results: There were 56,553 chemical mentions in the titles of 44,812 unique PubMed article abstracts. Based on our gold standard, our method of disambiguation improved entity normalization by 25.3 percentage points compared to using only the dictionary-based approach with fuzzy-string matching for disambiguation. For our Alzheimer's and dementia cohort, we were able to add 47.1% more potential mappings between MeSH and ChEBI when compared to BioPortal. Conclusion: Use of natural language models like PubMedBERT and resources such as ChEBI and PubChem provide a beneficial way to link entity mentions to ontology terms, while further supporting downstream tasks like filtering ChEBI mentions based on roles and assertions to find beneficial therapies for Alzheimer's and dementia.

7.
PNAS Nexus ; 1(3): pgac096, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35799833

RESUMO

The contours of endemic coronaviral disease in humans and other animals are shaped by the tendency of coronaviruses to generate new variants superimposed upon nonsterilizing immunity. Consequently, patterns of coronaviral reinfection in animals can inform the emerging endemic state of the SARS-CoV-2 pandemic. We generated controlled reinfection data after high and low risk natural exposure or heterologous vaccination to sialodacryoadenitis virus (SDAV) in rats. Using deterministic compartmental models, we utilized in vivo estimates from these experiments to model the combined effects of variable transmission rates, variable duration of immunity, successive waves of variants, and vaccination on patterns of viral transmission. Using rat experiment-derived estimates, an endemic state achieved by natural infection alone occurred after a median of 724 days with approximately 41.3% of the population susceptible to reinfection. After accounting for translationally altered parameters between rat-derived data and human SARS-CoV-2 transmission, and after introducing vaccination, we arrived at a median time to endemic stability of 1437 (IQR = 749.25) days with a median 15.4% of the population remaining susceptible. We extended the models to introduce successive variants with increasing transmissibility and included the effect of varying duration of immunity. As seen with endemic coronaviral infections in other animals, transmission states are altered by introduction of new variants, even with vaccination. However, vaccination combined with natural immunity maintains a lower prevalence of infection than natural infection alone and provides greater resilience against the effects of transmissible variants.

8.
PLoS One ; 16(11): e0260038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34813610

RESUMO

At present, global immunity to SARS-CoV-2 resides within a heterogeneous combination of susceptible, naturally infected and vaccinated individuals. The extent to which viral shedding and transmission occurs on re-exposure to SARS-CoV-2 is an important determinant of the rate at which COVID-19 achieves endemic stability. We used Sialodacryoadenitis Virus (SDAV) in rats to model the extent to which immune protection afforded by prior natural infection via high risk (inoculation; direct contact) or low risk (fomite) exposure, or by vaccination, influenced viral shedding and transmission on re-exposure. On initial infection, we confirmed that amount, duration and consistency of viral shedding, and seroconversion rates were correlated with exposure risk. Animals were reinfected after 3.7-5.5 months using the same exposure paradigm. 59% of seropositive animals shed virus, although at lower amounts. Previously exposed seropositive reinfected animals were able to transmit virus to 25% of naive recipient rats after 24-hour exposure by direct contact. Rats vaccinated intranasally with a related virus (Parker's Rat Coronavirus) were able to transmit SDAV to only 4.7% of naive animals after a 7-day direct contact exposure, despite comparable viral shedding. Cycle threshold values associated with transmission in both groups ranged from 29-36 cycles. Observed shedding was not a prerequisite for transmission. Results indicate that low-level shedding in both naturally infected and vaccinated seropositive animals can propagate infection in susceptible individuals. Extrapolated to COVID-19, our results suggest that continued propagation of SARS-CoV-2 by seropositive previously infected or vaccinated individuals is possible.


Assuntos
COVID-19/transmissão , Infecções por Coronaviridae/veterinária , Coronavirus do Rato/fisiologia , Modelos Biológicos , Modelos Estatísticos , Doenças dos Roedores/transmissão , Eliminação de Partículas Virais , Animais , COVID-19/virologia , Infecções por Coronaviridae/transmissão , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , SARS-CoV-2/fisiologia , Soroconversão
9.
Toxicol Pathol ; 49(8): 1368-1373, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569375

RESUMO

Within the substantially different time scales characterizing human and rodent brain development, key developmental processes are remarkably preserved. Shared processes include neurogenesis, myelination, synaptogenesis, and neuronal and synaptic pruning. In general, altricial rodents experience greater central nervous system (CNS) immaturity at birth and accelerated postnatal development compared to humans, in which protracted development of certain processes such as neocortical myelination and synaptic maturation extend into adulthood. Within this generalization, differences in developmental rates of various structures must be understood to accurately model human neurodevelopmental toxicity in rodents. Examples include greater postnatal neurogenesis in rodents, particularly within the dentate gyrus of rats, ongoing generation of neurons in the rodent olfactory bulb, differing time lines of neurotransmitter maturation, and differing time lines of cerebellar development. Comparisons are made to the precocial guinea pig and the long-lived naked mole rat, which, like primates, experiences more advanced CNS development at birth, with more protracted postnatal development. Methods to study various developmental processes are summarized using examples of comparative postnatal injury in humans and rodents.


Assuntos
Primatas , Roedores , Adulto , Animais , Cobaias , Humanos , Neurogênese/fisiologia , Neurônios , Bulbo Olfatório
10.
ILAR J ; 62(1-2): 17-34, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33914873

RESUMO

Developing strong animal models is essential for furthering our understanding of how the immune system functions in response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. The alarming speed at which SARS-CoV-2 has spread, and the high mortality rate of severe Coronavirus Disease 2019 (COVID-19), has required both basic science and clinical research to move at an unprecedented pace. Models previously developed to study the immune response against SARS-CoV have been rapidly deployed to now study SARS-CoV-2. To date, both small and large animal models are remarkably consistent when infected with SARS-CoV-2; however, certain models have proven more useful when answering specific immunological questions than others. Small animal models, such as Syrian hamsters, ferrets, and mice carrying the hACE2 transgene, appear to reliably recapitulate the initial cytokine surge seen in COVID-19 as well as show significant innate and adaptive cell infiltration in to the lung early in infection. Additionally, these models develop strong antibody responses to the virus, are protected from reinfection, and genetically modified versions exist that can be used to ask specific immunological questions. Large animal models such as rhesus and cynomologus macaques and African green monkeys are critical to understanding how the immune system responds to SARS-CoV-2 infection because they are considered to be the most similar to humans. These models are considered the gold standard for assessing vaccine efficacy and protection, and recapitulate the initial cytokine surge, immune cell infiltration into the lung, certain aspects of thrombosis, and the antibody and T-cell response to the virus. In this review, we discuss both small and large animal model studies previously used in SARS-CoV-2 research that may be useful in elucidating the immunological contributions to hallmark syndromes observed with COVID-19.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Cricetinae , Citocinas , Modelos Animais de Doenças , Furões , Pulmão , Camundongos , SARS-CoV-2
11.
ILAR J ; 62(1-2): 35-47, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33836527

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic has fueled unprecedented development of animal models to understand disease pathogenesis, test therapeutics, and support vaccine development. Models previously developed to study severe acute respiratory syndrome coronavirus (SARS-CoV) have been rapidly deployed to study SARS-CoV-2. However, it has become clear that despite the common use of ACE2 as a receptor for both viruses, the host range of the 2 viruses does not entirely overlap. Distinct ACE2-interacting residues within the receptor binding domain of SARS-CoV and SARS-CoV-2, as well as species differences in additional proteases needed for activation and internalization of the virus, are likely sources of host differences between the 2 viruses. Spontaneous models include rhesus and cynomolgus macaques, African Green monkeys, hamsters, and ferrets. Viral shedding and transmission studies are more frequently reported in spontaneous models. Mice can be infected with SARS-CoV; however, mouse and rat ACE2 does not support SARS-CoV-2 infection. Murine models for COVID-19 are induced through genetic adaptation of SARS-CoV-2, creation of chimeric SARS-CoV and SARS-CoV-2 viruses, use of human ACE2 knock-in and transgenic mice, and viral transfection of wild-type mice with human ACE2. Core aspects of COVID-19 are faithfully reproduced across species and model. These include the acute nature and predominantly respiratory source of viral shedding, acute transient and nonfatal disease with a largely pulmonary phenotype, similar short-term immune responses, and age-enhanced disease. Severity of disease and tissue involvement (particularly brain) in transgenic mice varies by promoter. To date, these models have provided a remarkably consistent template on which to test therapeutics, understand immune responses, and test vaccine approaches. The role of comorbidity in disease severity and the range of severe organ-specific pathology in humans remains to be accurately modeled.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Enzima de Conversão de Angiotensina 2 , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Furões/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ratos , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2
13.
Nat Metab ; 2(11): 1204-1211, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106687

RESUMO

Hypothalamic agouti-related peptide (AgRP) and neuropeptide Y-expressing neurons have a critical role in driving food intake, but also in modulating complex, non-feeding behaviours1. We interrogated whether AgRP neurons are relevant to the emergence of anorexia nervosa symptomatology in a mouse model. Here we show, using in vivo fibre photometry, a rapid inhibition of AgRP neuronal activity following voluntary cessation of running. All AgRP neuron-ablated, food-restricted mice die within 72 h of compulsive running, while daily activation of AgRP neurons using a chemogenetic tool increases voluntary running with no lethality of food-restricted animals. Animals with impaired AgRP neuronal circuits are unable to properly mobilize fuels during food-restriction-associated exercise; however, when provided with elevated fat content through diet, their death is completely prevented. Elevated fat content in the diet also prevents the long-term behavioural impact of food-restricted fit mice with elevated exercise volume. These observations elucidate a previously unsuspected organizational role of AgRP neurons, via the mediation of the periphery, in the regulation of compulsive exercise and its related lethality with possible implications for psychiatric conditions, such as anorexia nervosa.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Anorexia/metabolismo , Exercício Compulsivo/metabolismo , Neurônios/metabolismo , Animais , Anorexia/psicologia , Comportamento Animal , Peso Corporal , Exercício Compulsivo/psicologia , Dieta , Dieta Hiperlipídica , Feminino , Privação de Alimentos , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Fibras Nervosas/metabolismo , Análise de Sobrevida
14.
Comp Med ; 70(4): 390-395, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32736665

RESUMO

Immunodeficient rats are valuable in transplantation studies, but are vulnerable to infection from opportunistic organisms such as fungi. Immunodeficient Rag1- and Il2rg-deficient (RRG) rats housed at our institution presented with dark, proliferative, keratinized dermal growths. Histologic and PCR results indicated that the predominant organism associated with these lesions was fungus from the family Mucoraceae, mostly of the genus Rhizopus. The Mucoraceae family of fungi are environmental saprophytes and are often found in rodent bedding. These fungi can cause invasive opportunistic infections in immunosuppressed humans and animals. We discuss husbandry practices for immunosuppressed rodents with a focus on controlling fungal contaminants.


Assuntos
Mucormicose/veterinária , Infecções Oportunistas/veterinária , Animais , Feminino , Abrigo para Animais/normas , Imunocompetência , Masculino , Mucormicose/diagnóstico , Ratos , Doenças dos Roedores/diagnóstico
15.
Cell Tissue Res ; 380(2): 273-286, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32337614

RESUMO

Spontaneous animal models of Alzheimer's disease (AD) offer the potential to bridge the translational gulf between promising rodent studies and failed human clinical trials. In this review, the relationship between cell biology, neuropathology, clinical phenotype and biomarker progression in human AD is summarized. Genetically altered animals have provided key insights into the cell biology of AD and, together with emerging stem cell systems, remain the most effective means to disentangle the entwined mechanisms that underlie AD. Translating therapeutic success from these models of familial AD to late onset human AD has been challenging. Spontaneous models of AD do not harbor AD-associated mutations and could potentially be used to demonstrate greater generalizability of new therapies to late onset AD. The value of such models has been advanced primarily on the basis of similar amyloid (and far less frequent, tangle) neuropathology. While these models are promising, this alone is insufficient for use of these models to assess efficacy of potential therapies. The correlation between progression of neuropathology and cognitive phenotype and the association of these with biomarker progression in these models is discussed, with an emphasis on the dog and non-human primates. Currently, interventional studies using these models are hampered by use of a variety of outcomes that are not easily comparable with those used in human trials and do not permit longitudinal assessment. Additional studies aimed at closing the gap between neuropathology and usable outcome measures would support more accurate subject selection, assessment of target engagement and evaluation of therapeutic efficacy.


Assuntos
Doença de Alzheimer/diagnóstico , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos
16.
J Med Primatol ; 49(2): 113-115, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31879963

RESUMO

Obstruction of umbilical blood flow is a common cause of death in fetal nonhuman primates, but cord accidents have not been reported in the macaque. We describe two cases of cord accident in rhesus macaques (Macaca mulatta) resulting in fetal death at approximately 110 and 50 days of gestation, respectively.


Assuntos
Morte Fetal , Doenças Fetais/patologia , Macaca mulatta , Doenças dos Macacos/patologia , Anormalidade Torcional/veterinária , Cordão Umbilical/anormalidades , Animais , Morte Fetal/etiologia , Doenças Fetais/etiologia , Doenças dos Macacos/etiologia , Anormalidade Torcional/patologia
17.
J Med Primatol ; 49(2): 103-106, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31789460

RESUMO

A 16-year-old rhesus macaque presented with progressive, ascending quadriparesis following measles vaccination. He was diagnosed with transverse myelitis following MRI, gross necropsy, and histopathology. This is the first report of transverse myelitis in a rhesus macaque following measles vaccination.


Assuntos
Macaca mulatta , Vacina contra Sarampo/efeitos adversos , Doenças dos Macacos/diagnóstico , Mielite Transversa/veterinária , Vacinação/efeitos adversos , Animais , Masculino , Sarampo/terapia , Vacina contra Sarampo/administração & dosagem , Doenças dos Macacos/etiologia , Mielite Transversa/diagnóstico , Mielite Transversa/etiologia
18.
PLoS One ; 14(12): e0226176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31846471

RESUMO

Discovery studies in animals constitute a cornerstone of biomedical research, but suffer from lack of generalizability to human populations. We propose that large-scale interrogation of these data could reveal patterns of animal use that could narrow the translational divide. We describe a text-mining approach that extracts translationally useful data from PubMed abstracts. These comprise six modules: species, model, genes, interventions/disease modifiers, overall outcome and functional outcome measures. Existing National Library of Medicine natural language processing tools (SemRep, GNormPlus and the Chemical annotator) underpin the program and are further augmented by various rules, term lists, and machine learning models. Evaluation of the program using a 98-abstract test set achieved F1 scores ranging from 0.75-0.95 across all modules, and exceeded F1 scores obtained from comparable baseline programs. Next, the program was applied to a larger 14,481 abstract data set (2008-2017). Expected and previously identified patterns of species and model use for the field were obtained. As previously noted, the majority of studies reported promising outcomes. Longitudinal patterns of intervention type or gene mentions were demonstrated, and patterns of animal model use characteristic of the Parkinson's disease field were confirmed. The primary function of the program is to overcome low external validity of animal model systems by aggregating evidence across a diversity of models that capture different aspects of a multifaceted cellular process. Some aspects of the tool are generalizable, whereas others are field-specific. In the initial version presented here, we demonstrate proof of concept within a single disease area, Parkinson's disease. However, the program can be expanded in modular fashion to support a wider range of neurodegenerative diseases.


Assuntos
Pesquisa Biomédica , Mineração de Dados , Doenças Neurodegenerativas , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Avaliação de Resultados em Cuidados de Saúde
19.
J Am Assoc Lab Anim Sci ; 58(6): 802-809, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540585

RESUMO

Studies using the Mouse Grimace Scale have shown that for many NSAID, including meloxicam, minimal doses of at least 20 mg/kg may be necessary to achieve adequate peri- and post-operative analgesia in mice. However, more data are needed to determine whether such NSAID doses exceed the threshold for gastrointestinal ulceration or induce other relevant pathology. We administered equal volumes of saline or injectable meloxicam (1 or 5 mg/mL) at a dose of 20 mg/kg SC to 20 young adult male and female C57BL/6N mice daily for 6 d and performed necropsies on all mice on the seventh day. Mice given 5 mg/mL meloxicam subcutaneously developed significantly more severe pathology at the injection site than saline controls. Pathology was characterized by full-thickness epidermal necrosis; cavitary lesions within subcutis, muscle, or fat; steatitis; and myositis. Mice that received 1 mg/mL meloxicam subcutaneously developed lesions that were qualitatively similar but far less severe than those after 5 mg/mL. However, no pathologic lesions typically associated with NSAID toxicity, such as gastric ulceration and liver and kidney lesions, were seen. These results demonstrate that although meloxicam injected subcutaneously causes concentration-dependent skin pathology at the injection site, a dose of 20 mg/kg can be safely administered subcutaneously at a concentration of 1 mg/mL for as long as 6 d.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Meloxicam/toxicidade , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Injeções Subcutâneas , Ciência dos Animais de Laboratório , Masculino , Meloxicam/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
20.
G3 (Bethesda) ; 9(8): 2637-2646, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263061

RESUMO

Anthracyclines cause progressive cardiotoxicity whose ultimate severity is individual to the patient. Genetic determinants contributing to this variation are difficult to study using current mouse models. Our objective was to determine whether a spectrum of anthracycline induced cardiac disease can be elicited across 10 Collaborative Cross mouse strains given the same dose of doxorubicin. Mice from ten distinct strains were given 5 mg/kg of doxorubicin intravenously once weekly for 5 weeks (total 25 mg/kg). Mice were killed at acute or chronic timepoints. Body weight was assessed weekly, followed by terminal complete blood count, pathology and a panel of biomarkers. Linear models were fit to assess effects of treatment, sex, and sex-by-treatment interactions for each timepoint. Impaired growth and cardiac pathology occurred across all strains. Severity of these varied by strain and sex, with greater severity in males. Cardiac troponin I and myosin light chain 3 demonstrated strain- and sex-specific elevations in the acute phase with subsequent decline despite ongoing progression of cardiac disease. Acute phase cardiac troponin I levels predicted the ultimate severity of cardiac pathology poorly, whereas myosin light chain 3 levels predicted the extent of chronic cardiac injury in males. Strain- and sex-dependent renal toxicity was evident. Regenerative anemia manifested during the acute period. We confirm that variable susceptibility to doxorubicin-induced cardiotoxicity observed in humans can be modeled in a panel of CC strains. In addition, we identified a potential predictive biomarker in males. CC strains provide reproducible models to explore mechanisms contributing to individual susceptibility in humans.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Animais , Antibióticos Antineoplásicos/uso terapêutico , Biomarcadores , Biópsia , Cardiotoxicidade/mortalidade , Cruzamentos Genéticos , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Feminino , Fibrose , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA