Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 165(Pt A): 346-353, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987082

RESUMO

Corneal cross-linking (CXL) is a common surgical procedure used to modify corneal biomechanics and stabilize keratoconus progression which is still under discussion. Its side effects, which are mostly related to anatomical unpredictability and stromal exposure, are the reason for the search for new CXL agents. In this work we have quantitatively evaluated the porcine corneal stroma architecture treated with collagen crosslinking agents such as riboflavin solutions and açai extract, using second harmonic generation microscopy. Aimed at evaluating the morphological changes in the corneal stroma after collagen crosslinking under a CXL chemical agent, a tubeness filter based Hessian matrix to obtain a 3D fiber characterization of the SHG images was applied. The results showed a curling effect and shortening of the collagen fibers treated with açai as compared to the control. They also showed a higher degree of clustering of the collagen fibers with larger empty spaces when compared to the other two groups. We believe that studies such as these presented in this paper are a good direct nondestructive and free labeling evaluation technique that allows the observation of morphologic features of corneas treated with new CXL agents.


Assuntos
Colágeno/química , Substância Própria/química , Reagentes de Ligações Cruzadas/química , Riboflavina/química , Animais , Microscopia de Geração do Segundo Harmônico , Suínos
2.
Cancer Inform ; 16: 1176935117690162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469386

RESUMO

A vast number of human pathologic conditions are directly or indirectly related to tissular collagen structure remodeling. The nonlinear optical microscopy second-harmonic generation has become a powerful tool for imaging biological tissues with anisotropic hyperpolarized structures, such as collagen. During the past years, several quantification methods to analyze and evaluate these images have been developed. However, automated or semiautomated solutions are necessary to ensure objectivity and reproducibility of such analysis. This work describes automation and improvement methods for calculating the anisotropy (using fast Fourier transform analysis and the gray-level co-occurrence matrix). These were applied to analyze biopsy samples of human ovarian epithelial cancer at different stages of malignancy (mucinous, serous, mixed, and endometrial subtypes). The semiautomation procedure enabled us to design a diagnostic protocol that recognizes between healthy and pathologic tissues, as well as between different tumor types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA