Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(16): 4311-4318, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619190

RESUMO

InP/ZnSexS1-x core/shell quantum dots (QDs) with varying Cu concentrations were synthesized by a one-pot hot-injection method. X-ray diffraction and high-resolution transmission electron microscopy results indicate that Cu doping did not alter the crystal structure or particle size of the QDs. The optical shifts in UV-visible absorption and photoluminescence (PL) suggest changes in the electronic structure and induction of lattice disorder due to Cu doping. Ultrafast transient absorption spectroscopy (TAS) reveled that a higher Cu-doping level leads to faster charge carrier recombination, likely due to increased nonradiative decay from defect states. Time-resolved PL (TRPL) studies show longer average lifetimes of charge carriers with increased Cu doping. These findings informed the development of a kinetic model to better understand how Cu-induced disorder affects charge carrier dynamics in the QDs, which is important for emerging applications of Cu-doped InP/ZnSexS1-x QDs in optoelectronics.

2.
J Phys Chem Lett ; 14(36): 8095-8099, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37656919

RESUMO

The excited state dynamics of ligand-passivated PbBr2 molecular clusters (MCs) in solution have been investigated for the first time using femtosecond transient absorption spectroscopy. The results uncover a transient bleach (TB) feature peaked around 404 nm, matching the ground state electronic absorption band peaked at 404 nm. The TB recovery signal can be fitted with a triple exponential with fast (10 ps), medium (350 ps), and long (1.8 ns) time constants. The medium and long time constants are very similar to those observed in the time-resolved photoluminescence (TRPL) decay monitored at 412 nm. The TB fast component is attributed to vibrational relaxation in the excited electronic state while the medium component with dominant amplitude is attributed to recombination between the relaxed electron and hole. The small amplitude slow component is assigned to electrons in a relatively long-lived excited electronic state, e.g., triplet state, or shallow trap state due to defects. This study provides new insights into the excited state dynamics of metal halide MCs.

3.
J Phys Chem Lett ; 14(1): 116-121, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574605

RESUMO

In the synthesis of cesium lead bromide (CsPbBr3) perovskite quantum dots, with an electronic absorption and emission band around 510 nm, and perovskite magic-sized clusters (PMSCs), with an electronic absorption and emission band around 430 nm, another distinct absorption and emission around 400 nm is often observed. While many would attribute this band to small perovskite particles, here we show strong evidence that this band is a result of the formation of lead bromide molecular clusters (PbBr2 MCs) passivated with ligands, which do not contain the A component of the ABX3 perovskite structure. This evidence comes from a systematic comparative study of the reaction products with and without the A component under otherwise identical experimental conditions. The results support that the near 400 nm band originates from ligand-passivated PbBr2 MCs. This observation seems to be quite general and is significant in understanding the nature of the reaction products in the synthesis of metal halide perovskite nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA