Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698905

RESUMO

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Assuntos
Toxinas Bacterianas , SARS-CoV-2 , Sinaptogirinas , Internalização do Vírus , Humanos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Sinaptogirinas/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Jurkat , Aggregatibacter actinomycetemcomitans/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Endocitose , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Microdomínios da Membrana/metabolismo
2.
Pathogens ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392893

RESUMO

Recently, we reported that oral-epithelial cells (OE) are unique in their response to Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) in that cell cycle arrest (G2/M) occurs without leading to apoptosis. We now demonstrate that Cdt-induced cell cycle arrest in OE has a duration of at least 7 days with no change in viability. Moreover, toxin-treated OE develops a new phenotype consistent with cellular senescence; this includes increased senescence-associated ß-galactosidase (SA-ß-gal) activity and accumulation of the lipopigment, lipofuscin. Moreover, the cells exhibit a secretory profile associated with cellular senescence known as the senescence-associated secretory phenotype (SASP), which includes IL-6, IL-8 and RANKL. Another unique feature of Cdt-induced OE senescence is disruption of barrier function, as shown by loss of transepithelial electrical resistance and confocal microscopic assessment of primary gingival keratinocyte structure. Finally, we demonstrate that Cdt-induced senescence is dependent upon the host cell protein cellugyrin, a homologue of the synaptic vesicle protein synaptogyrin. Collectively, these observations point to a novel pathogenic outcome in oral epithelium that we propose contributes to both A. actinomycetemcomitans infection and periodontal disease progression.

3.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233133

RESUMO

Cytolethal distending toxins (Cdt) are produced by a diverse group of pathogens. One Cdt-producing organism, Aggregatibacter actinomycetemcomitans, plays a critical role in the pathogenesis of a unique form of periodontitis, formerly referred to as localized aggressive periodontitis. The active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase capable of inducing PI-3-kinase signaling blockade, a requisite for Cdt-induced toxicity in lymphocytes. In this study, we extended our observations to include the oral keratinocyte response to AaCdt using cell lines and primary gingival keratinocytes. All three exhibited G2/M arrest when exposed to AaCdt toxin within 24 h. Toxin-treated cells exhibited reduced levels of pAkt and pGSK3ß within 6 h. Pre-treatment with GSK3ß kinase inhibitors, LY2090314, CHIR99021 and Tideglusib, abrogated Cdt-induced G2/M arrest. None of the oral epithelial cells exhibited evidence of apoptosis. Cells remained arrested in the G2/M phase for at least 72 h without evidence of DNA damage response activation (H2AX phosphorylation). Cdt-treated cells displayed increased phosphorylation of the cyclin dependent kinase 1 (CDK1); moreover, the GSK3 inhibitors blocked this increase and reduced total CDK1 levels. This study further clarifies the potential mechanism(s) contributing to Cdt toxicity and toxin-mediated pathogenesis.


Assuntos
Aggregatibacter actinomycetemcomitans , Periodontite Agressiva , Apoptose , Toxinas Bacterianas , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Queratinócitos , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
4.
Front Cell Infect Microbiol ; 11: 664221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854985

RESUMO

Human lymphocytes exposed to Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) undergo cell cycle arrest and apoptosis. In previous studies, we demonstrated that the active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase. Moreover, AaCdt-treated cells exhibit evidence of PI-3-kinase (PI-3K) signaling blockade characterized by reduced levels of PIP3, pAkt, and pGSK3ß. We have also demonstrated that PI-3K blockade is a requisite of AaCdt-induced toxicity in lymphocytes. In this study, we extended our observations to include assessment of Cdts from Haemophilus ducreyi (HdCdt) and Campylobacter jejuni (CjCdt). We now report that the CdtB subunit from HdCdt and CjCdt, similar to that of AaCdt, exhibit potent PIP3 phosphatase activity and that Jurkat cells treated with these Cdts exhibit PI-3K signaling blockade: reduced levels of pAkt and pGSK3ß. Since non-phosphorylated GSK3ß is the active form of this kinase, we compared Cdts for dependence on GSK3ß activity. Two GSK3ß inhibitors were employed, LY2090314 and CHIR99021; both inhibitors blocked the ability of Cdts to induce cell cycle arrest. We have previously demonstrated that AaCdt induces increases in the CDK inhibitor, p21CIP1/WAF1, and, further, that this was a requisite for toxin-induced cell death via apoptosis. We now demonstrate that HdCdt and CjCdt also share this requirement. It is also noteworthy that p21CIP1/WAF1 was not involved in the ability of the three Cdts to induce cell cycle arrest. Finally, we demonstrate that, like AaCdt, HdCdt is dependent upon the host cell protein, cellugyrin, for its toxicity (and presumably internalization of CdtB); CjCdt was not dependent upon this protein. The implications of these findings as they relate to Cdt's molecular mode of action are discussed.


Assuntos
Campylobacter jejuni , Haemophilus ducreyi , Toxinas Bacterianas , Humanos , Fosfatidilinositóis , Monoéster Fosfórico Hidrolases , Polifosfatos
5.
Front Immunol ; 11: 1262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655562

RESUMO

The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is a heterotrimeric AB2 toxin capable of inducing cell cycle arrest and apoptosis in lymphocytes and other cell types. Recently, we have demonstrated that human macrophages are resistant to Cdt-induced apoptosis but are susceptible to toxin-induced pro-inflammatory cytokine response involving activation of the NLRP3 inflammasome. Exposure to Cdt results in binding to the cell surface followed by internalization and translocation of the active subunit, CdtB, to intracellular compartments. Internalization involves hijacking of retrograde pathways; treatment of cells with Retro-2 leads to a decrease in CdtB-Golgi association. These events are dependent upon toxin binding to cholesterol in the context of lipid rich membrane microdomains often referred to as lipid rafts. We now demonstrate that within 1 h of exposure of macrophages to Cdt, CdtB is internalized and found primarily within lipid rafts; concurrently, cellugyrin (synaptogyrin-2) also translocates into lipid rafts. Further analysis by immunoprecipitation indicates that CdtB associates with complexes containing both cellugyrin and Derlin-2. Moreover, a human macrophage cell line deficient in cellugyrin expression (THP-1Cg-) challenged with Cdt failed to internalize CdtB and was resistant to the Cdt-induced pro-inflammatory response. We propose that lipid rafts along with cellugyrin play a critical role in the internalization and translocation of CdtB to critical intracellular target sites in human macrophages. These studies provide the first evidence that cellugyrin is expressed in human macrophages and plays a critical role in Cdt toxicity of these cells.


Assuntos
Toxinas Bacterianas/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Subunidades Proteicas/imunologia , Sinaptogirinas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Citocinas/metabolismo , Humanos , Imunoprecipitação , Espaço Intracelular/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico , Células THP-1
6.
Pathogens ; 9(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906446

RESUMO

The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces lymphocytes to undergo cell-cycle arrest and apoptosis; toxicity is dependent upon the active Cdt subunit, CdtB. We now demonstrate that p21CIP1/WAF1 is critical to Cdt-induced apoptosis. Cdt induces increases in the levels of p21CIP1/WAF1 in lymphoid cell lines, Jurkat and MyLa, and in primary human lymphocytes. These increases were dependent upon CdtB's ability to function as a phosphatidylinositol (PI) 3,4,5-triphosphate (PIP3) phosphatase. It is noteworthy that Cdt-induced increases in the levels of p21CIP1/WAF1 were accompanied by a significant decline in the levels of phosphorylated p21CIP1/WAF1. The significance of Cdt-induced p21CIP1/WAF1 increase was assessed by preventing these changes with a two-pronged approach; pre-incubation with the novel p21CIP1/WAF1 inhibitor, UC2288, and development of a p21CIP1/WAF1-deficient cell line (Jurkatp21-) using clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 gene editing. UC2288 blocked toxin-induced increases in p21CIP1/WAF1, and JurkatWT cells treated with this inhibitor exhibited reduced susceptibility to Cdt-induced apoptosis. Likewise, Jurkatp21- cells failed to undergo toxin-induced apoptosis. The linkage between Cdt, p21CIP1/WAF1, and apoptosis was further established by demonstrating that Cdt-induced increases in levels of the pro-apoptotic proteins Bid, Bax, and Bak were dependent upon p21CIP1/WAF1 as these changes were not observed in Jurkatp21- cells. Finally, we determined that the p21CIP1/WAF1 increases were dependent upon toxin-induced increases in the level and activity of the chaperone heat shock protein (HSP) 90. We propose that p21CIP1/WAF1 plays a key pro-apoptotic role in mediating Cdt-induced toxicity.

7.
Cell Microbiol ; 18(2): 223-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26247396

RESUMO

The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3ß. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3ß kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3ß. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Toxinas Bacterianas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Toxinas Bacterianas/genética , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular , Análise Mutacional de DNA , Células Epiteliais/fisiologia , Células HeLa , Humanos , Células Jurkat , Linfócitos/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/genética , Ligação Proteica , Transdução de Sinais
8.
Infect Immun ; 83(10): 4042-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216427

RESUMO

Induction of cell cycle arrest in lymphocytes following exposure to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is dependent upon the integrity of lipid membrane microdomains. Moreover, we have previously demonstrated that the association of Cdt with target cells involves the CdtC subunit which binds to cholesterol via a cholesterol recognition amino acid consensus sequence (CRAC site). In this study, we demonstrate that the active Cdt subunit, CdtB, also is capable of binding to large unilamellar vesicles (LUVs) containing cholesterol. Furthermore, CdtB binding to cholesterol involves a similar CRAC site as that demonstrated for CdtC. Mutation of the CRAC site reduces binding to model membranes as well as toxin binding and CdtB internalization in both Jurkat cells and human macrophages. A concomitant reduction in Cdt-induced toxicity was also noted, indicated by reduced cell cycle arrest and apoptosis in Jurkat cells and a reduction in the proinflammatory response in macrophages (interleukin 1ß [IL-1ß] and tumor necrosis factor alpha [TNF-α] release). Collectively, these observations indicate that membrane cholesterol serves as an essential ligand for both CdtC and CdtB and, further, that this binding is necessary for both internalization of CdtB and subsequent molecular events leading to intoxication of cells.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Colesterol/metabolismo , Infecções por Pasteurellaceae/microbiologia , Aggregatibacter actinomycetemcomitans/química , Aggregatibacter actinomycetemcomitans/genética , Motivos de Aminoácidos , Toxinas Bacterianas/genética , Humanos , Interleucina-1beta/imunologia , Macrófagos/imunologia , Infecções por Pasteurellaceae/imunologia , Infecções por Pasteurellaceae/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Infect Immun ; 83(4): 1487-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644004

RESUMO

The cytolethal distending toxin (Cdt) is produced from a number of bacteria capable of causing infection and inflammatory disease. Our previous studies with Actinobacillus actinomycetemcomitans Cdt demonstrate not only that the active toxin subunit functions as a phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase but also that macrophages exposed to the toxin were stimulated to produce proinflammatory cytokines. We now demonstrate that the Cdt-induced proinflammatory response involves the activation of the NLRP3 inflammasome. Specific inhibitors and short hairpin RNA (shRNA) were employed to demonstrate requirements for NLRP3 and ASC as well as caspase-1. Furthermore, Cdt-mediated inflammasome activation is dependent upon upstream signals, including reactive oxygen species (ROS) generation and Cdt-induced increases in extracellular ATP levels. Increases in extracellular ATP levels contribute to the activation of the P2X7 purinergic receptor, leading to K+ efflux. The relationship between the abilities of the active toxin subunit CdtB to function as a lipid phosphatase, activate the NLRP3 inflammasome, and induce a proinflammatory cytokine response is discussed. These studies provide new insight into the virulence potential of Cdt in mediating the pathogenesis of disease caused by Cdt-producing organisms such as Aggregatibacter actinomycetemcomitans.


Assuntos
Toxinas Bacterianas/imunologia , Proteínas de Transporte/imunologia , Citocinas/metabolismo , Inflamassomos/imunologia , Macrófagos/imunologia , Trifosfato de Adenosina/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Caspase 1/imunologia , Linhagem Celular Tumoral , Ativação Enzimática/imunologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Interleucina-18/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Monoéster Fosfórico Hidrolases/metabolismo , Potássio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Cell Microbiol ; 16(9): 1391-404, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24697951

RESUMO

The Aggregatibactor actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes; these toxic effects are due to the active subunit, CdtB, which functions as a phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase. We now extend our investigation and demonstrate that Cdt is able to perturb human macrophage function. THP-1- and monocyte-derived macrophages were found not to be susceptible to Cdt-induced apoptosis. Nonetheless, the toxin was capable of binding to macrophages and perturbing PI-3K signalling resulting in decreased PIP3 levels and reduced phosphorylation of Akt and GSK3ß; these changes were accompanied by concomitant alterations in kinase activity. Exposure of monocytes and macrophages to Cdt resulted in pro-inflammatory cytokine production including increased expression and release of IL-1ß, TNFα and IL-6. Furthermore, treatment of cells with either TLR-2, -3 or -4 agonists in the presence of Cdt resulted in an augmented pro-inflammatory response relative to agonist alone. GSK3ß inhibitors blocked the Cdt-induced pro-inflammatory cytokine response suggesting a pivotal role for PI-3K blockade, concomitant decrease in GSK3ß phosphorylation and increased kinase activity. Collectively, these studies provide new insight into the virulence potential of Cdt in mediating the pathogenesis of disease caused by Cdt-producing organisms.


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Toxinas Bacterianas/imunologia , Citocinas/imunologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Mol Immunol ; 48(1-3): 203-10, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20863570

RESUMO

It is well established that many cell functions are controlled by the PI-3K signaling pathway and the signaling lipid, phosphatidylinositol-3,4,5-triphosphate (PIP3). This is particularly true for mast cells which play a key regulatory role in allergy and inflammation through activation via high-affinity IgE receptors (FcɛRI) leading to activation of signaling cascades and subsequent release of histamine and other pro-inflammatory mediators. A pivotal component of this cascade is the activation of PI-3K and a rise in intracellular levels of PIP3. In this study, we developed a novel chimeric toxin that selectively binds to mast cells and which functions as a PIP3 phosphatase. Specifically, the chimeric toxin was composed of the FcɛRI binding region of IgE and the active subunit of the cytolethal distending toxin, CdtB, which we have recently demonstrated to function as a PIP3 phosphatase. We demonstrate that the chimeric toxin retains PIP3 phosphatase activity and selectively binds to mast cells. Moreover, the toxin is capable of altering intracellular levels of PIP3, block antigen-induced Akt phosphorylation and degranulation. These studies provide further evidence for the pivotal role of PIP3 in regulating mast cell activation and for this signaling lipid serving as a novel target for therapeutic intervention of mast cell-mediated disease. Moreover, these studies provide evidence for the utilization of CdtB as a novel therapeutic agent for targeting the PI-3K signaling pathway.


Assuntos
Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Degranulação Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/farmacologia , Receptores de IgE/metabolismo , Animais , Toxinas Bacterianas/química , Western Blotting , Degranulação Celular/imunologia , Eletroforese em Gel de Poliacrilamida , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Fosfatidilinositol/imunologia , Ratos , Receptores de IgE/química , Transdução de Sinais/imunologia
12.
J Biol Chem ; 284(16): 10650-8, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19240023

RESUMO

Induction of cell cycle arrest in lymphocytes after exposure to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is dependent upon the integrity of lipid membrane microdomains. In this study we further demonstrate that the association of Cdt with lymphocyte plasma membranes is dependent upon binding to cholesterol. Depletion of cholesterol resulted in reduced toxin binding, whereas repletion of cholesterol-depleted cells restored binding. We employed fluorescence resonance energy transfer and surface plasmon resonance to demonstrate that toxin association with model membranes is dependent upon the concentration of cholesterol; moreover, these interactions were cholesterol-specific as the toxin failed to interact with model membranes containing stigmasterol, ergosterol, or lanosterol. Further analysis of the toxin indicated that the CdtC subunit contains a cholesterol recognition/interaction amino acid consensus (CRAC) region. Mutation of the CRAC site resulted in decreased binding of the holotoxin to cholesterol-containing model membranes as well as to the surface of Jurkat cells. The mutant toxin also exhibited reduced capacity for intracellular transfer of the active toxin subunit, CdtB, as well as reduced toxicity. Collectively, these observations indicate that membrane cholesterol serves as an essential ligand for Cdt and that this association can be blocked by either depleting membranes of cholesterol or mutation of the CRAC site.


Assuntos
Toxinas Bacterianas/farmacologia , Ciclo Celular/efeitos dos fármacos , Membrana Celular , Colesterol/metabolismo , Linfócitos , Sequência de Aminoácidos , Animais , Toxinas Bacterianas/química , Membrana Celular/química , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Células Jurkat , Lipossomos/química , Lipossomos/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Modelos Moleculares , Mutação , Ressonância de Plasmônio de Superfície
13.
Cell Microbiol ; 8(5): 823-36, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611231

RESUMO

We have previously shown that Actinobacillus actinomycetemcomitans cytolethal-distending toxin (Cdt) is a potent immunosuppressive agent that induces G2/M arrest in human lymphocytes. In this study, we explored the possibility that Cdt-mediated immunotoxicity involves lipid membrane microdomains. We first determined that following treatment of Jurkat cells with Cdt holotoxin all three Cdt subunits localize to these microdomains. Laser confocal microscopy was employed to colocalize the subunits with GM1-enriched membrane regions which are characteristic of membrane rafts. Western blot analysis of isolated lipid rafts also demonstrated the presence of Cdt peptides. Cholesterol depletion, using methyl beta-cyclodextrin, protected cells from the ability of the Cdt holotoxin to induce G2 arrest. Moreover, cholesterol depletion reduced the ability of the toxin to associate with Jurkat cells. Thus, lipid raft integrity is vital to the action of Cdt on host cells. The implications of our observations with respect to Cdt mode of action are discussed.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Toxinas Bacterianas/farmacologia , Ciclo Celular , Colesterol/metabolismo , Microdomínios da Membrana/fisiologia , Antígenos CD/metabolismo , Gangliosidose GM1/metabolismo , Humanos , Células Jurkat , Subunidades Proteicas/farmacologia , Receptores da Transferrina/metabolismo , beta-Ciclodextrinas/farmacologia
14.
Infect Immun ; 74(4): 2080-92, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16552037

RESUMO

We have shown previously that treatment of human lymphocytes with the Actinobacillus actinomycetemcomitans cytolethal distending toxin (Cdt) results in dose-dependent G2 arrest, followed 24 h later by apoptotic cell death. Here we demonstrated that for Jurkat cells exposed to high concentrations of Cdt (>0.2 ng/ml) there was a dose-dependent increase in the level of S-phase cells and a concomitant decrease in the level of G2 cells. Fluorescence-activated cell sorter analysis demonstrated that the S-phase cells did not incorporate BrdU and likely represented cells that arrested in G2 and underwent significant DNA fragmentation. Analysis of the kinetics of the appearance of both S-phase cells and apoptotic cells supported this interpretation. Cells exposed to low doses of toxin exhibited G2 arrest at 24 h, but at 48 and 72 h there were also decreases in the level of G2 cells and concomitant increases in the levels of S, G0/G1, and sub-G0 cells; these changes were paralleled by increased numbers of apoptotic cells. Cells exposed to high doses of toxin exhibited these changes 24 to 48 h earlier. We also examined the relationship between G2 arrest, DNA fragmentation, and activation of the apoptotic cascade. We employed two inhibitors of apoptosis, overexpression of Bcl-2 and the caspase-3 inhibitor zvad. Both inhibitors blocked Cdt-induced apoptosis, Cdt-induced DNA fragmentation, and phosphorylation of the histone H2AX. However, the cells retained the ability to undergo G2 arrest in the presence of the toxin. Thus, it appears that high doses of Cdt induce rapid onset of DNA degradation resulting from activation of the apoptotic cascade.


Assuntos
Aggregatibacter actinomycetemcomitans/patogenicidade , Apoptose , Toxinas Bacterianas/toxicidade , Fragmentação do DNA , Linfócitos/metabolismo , Linfócitos/microbiologia , Apoptose/imunologia , Ciclo Celular/imunologia , Fragmentação do DNA/imunologia , Humanos , Células Jurkat , Cinética , Ativação Linfocitária/imunologia , Linfócitos/citologia
15.
J Immunol ; 174(4): 2228-34, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15699156

RESUMO

We have previously shown that Actinobacillus actinomycetemcomitans produces an immunosuppressive factor encoded by the cytolethal distending toxin (cdt)B gene. In this study, we used rCdt peptides to study the contribution of each subunit to toxin activity. As previously reported, CdtB is the only Cdt subunit that is capable of inducing cell cycle arrest by itself. Although CdtA and CdtC do not exhibit activity alone, each subunit is able to significantly enhance the ability of CdtB to induce G2 arrest in Jurkat cells; these effects were dependent upon protein concentration. Moreover, the combined addition of both CdtA and CdtC increased the ED50 for CdtB >7000-fold. In another series of experiments, we demonstrate that the three Cdt peptides are able to form a functional toxin unit on the cell surface. However, these interactions first require that a complex forms between the CdtA and CdtC subunits, indicating that these peptides are required for interaction between the cell and the holotoxin. This conclusion is further supported by experiments in which both Jurkat cells and normal human lymphocytes were protected from Cdt holotoxin-induced G2 arrest by pre-exposure to CdtA and CdtC. Finally, we have used optical biosensor technology to show that CdtA and CdtC have a strong affinity for one another (10(-7) M). Furthermore, although CdtB is unable to bind to either CdtA or CdtC alone, it is capable of forming a stable complex with CdtA/CdtC. The implications of our results with respect to the function and structure of the Cdt holotoxin are discussed.


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Toxinas Bacterianas/toxicidade , Ciclo Celular/imunologia , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/imunologia , Subunidades Proteicas/toxicidade , Aggregatibacter actinomycetemcomitans/química , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Morte Celular/imunologia , Membrana Celular/imunologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Relação Dose-Resposta Imunológica , Inibidores do Crescimento/química , Inibidores do Crescimento/metabolismo , Inibidores do Crescimento/toxicidade , Humanos , Células Jurkat , Peptídeos/metabolismo , Peptídeos/toxicidade , Ligação Proteica/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Relação Estrutura-Atividade
16.
J Immunol ; 172(1): 410-7, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14688349

RESUMO

We have shown the Actinobacillus actinomycetemcomitans produces an immunosuppressive factor encoded by the cytolethal distending toxin (cdt)B gene, which is homologous to a family of Cdts expressed by several Gram-negative bacteria. We now report that the capacity for CdtB to induce G(2) arrest in Jurkat cells is greater in the presence of the other Cdt peptides: CdtA and CdtC. Plasmids containing the cdt operon were constructed and expressed in Escherichia coli; each plasmid contained a modified cdt gene that expressed a Cdt peptide containing a C-terminal His tag. All three Cdt peptides copurified with the His-tagged Cdt peptide. Each of the peptides associated with the complex was truncated; N-terminal amino acid analysis of CdtB and CdtC indicated that the truncation corresponds to cleavage of a previously described signal sequence. CdtA was present in two forms in crude extracts, 25 and 18 kDa; only the 18-kDa fragment copurified with the Cdt complexes. Cdt complexes were also immunoprecipitated from A. actinomycetemcomitans extracts using anti-CdtC mAb. Exposure of Jurkat cells to 40 pg resulted in >50% accumulation of G(2) cells. CdtB and CdtC were detected by immunofluorescence on the cell surface after 2-h exposure to the holotoxin. CdtA was not detected by immunofluorescence, but all three peptides were associated with Jurkat cells when analyzed by Western blot. These studies suggest that the active Cdt holotoxin is a heterotrimer composed of truncated CdtA, CdtB, and CdtC, and all three peptides appear to associate with lymphocytes.


Assuntos
Aggregatibacter actinomycetemcomitans/química , Toxinas Bacterianas/química , Subunidades Proteicas/química , Aggregatibacter actinomycetemcomitans/genética , Sequência de Aminoácidos , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Sequência de Bases , Fase G2/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Humanos , Células Jurkat , Substâncias Macromoleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/toxicidade , Testes de Precipitina , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Subunidades Proteicas/toxicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/microbiologia , Linfócitos T/patologia
17.
Antioxid Redox Signal ; 4(3): 379-89, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12215206

RESUMO

There is growing evidence that heavy metals, in general, and mercurial compounds, in particular, are toxic to the human immune system. We have previously shown that methyl mercuric chloride (MeHgCl) is a potent human T-cell apoptogen; moreover, mitochondria appear to be a target organelle for the induction of cell death. The objective of this study was to determine the impact of MeHgCl on mitochondrial function in lymphocytes in terms of modulating reactive oxygen species (ROS) generation, thiol status, and caspase activation. Using the fluorescent probe, 3,3'-dihexyloxacarbocyanine, we demonstrated that exposure to MeHgCl for 1 h resulted in a profound decrease in the mitochondrial transmembrane potential. We next observed the release of cytochrome c from mitochondria into the cytosol; significant translocation was noted between 4 and 8 h following treatment with mercury. ROS generation was monitored by following the conversion of dihydroethidium to the fluorescent product, ethidium. Kinetic analysis indicated that ROS generation was maximal after 16 h of exposure to MeHgCl. The toxicant also depleted the thiol reserves of the cell; glutathione levels were depleted in a dose-dependent fashion reaching minimal levels at 16 h. Real-time RT-PCR analysis demonstrated a significant reduction in both glutathione S-transferase and glutathione peroxidase gene expression in mercury-treated cells. Finally, after 16 h of treatment with MeHgCl, we observed activation of caspase-8, -9, and -3 along with increased expression of caspase-8 and -9. We propose that the target organelle for MeHgCl is the mitochondrion and that induction of oxidative stress is critical to activation of death-signaling pathways. Additonally, mercury acts as a genotoxin significantly altering the expression of genes that affect cell survival and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linfócitos/efeitos dos fármacos , Compostos de Metilmercúrio/farmacologia , Mitocôndrias/efeitos dos fármacos , Adulto , Animais , Apoptose/fisiologia , Inibidores de Caspase , Inibidores de Cisteína Proteinase/metabolismo , Grupo dos Citocromos c/metabolismo , Ativação Enzimática , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Potenciais da Membrana/fisiologia , Compostos de Metilmercúrio/toxicidade , Mitocôndrias/metabolismo , Modelos Biológicos , Oxirredução , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA