Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Water Health ; 22(3): 565-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557571

RESUMO

Drawing on responses from 238 beachgoers who have visited a Georgia (U.S. state) beach in the past three years, this study asks respondents about their knowledge of beach water quality monitoring, awareness of beach health advisories, perception of water quality, and expected responses upon learning of a beach's water pollution advisory. Binomial logistic regression finds that the only demographic predictor of respondents who would completely stop visiting a beach with an advisory is whether the respondent is a visitor or resident (year-round or part-time). Nearly 40% of visitors would not come to a beach with an advisory compared to 13.4% of residents. Most respondents report they would continue to visit a beach but would stay out of the water and stop harvesting seafood from the beach's waters. More than a third (36.1%), however, are unaware Georgia regularly monitors beach water for water quality, and 41.2% have never read a beach sign warning of contaminated water or seafood. Alarmingly, just over half view aesthetic factors such as no litter, no odor, and clear water as criteria for defining whether beach water is safe.


Assuntos
Praias , Qualidade da Água , Poluição da Água , Georgia , Monitoramento Ambiental
2.
Water Environ Res ; 94(7): e10757, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35765771

RESUMO

This study aimed to determine the microbial water quality of Imrahor Pond by enumerating the coliform bacteria levels in the area. Water samples were collected biweekly from the surface and bottom waters at seven points in the pond. Samples were analyzed for total coliforms, Escherichia coli, physicochemical parameters (water temperature, conductivity, pH, turbidity, dissolved oxygen, nitrate) and 1-day rainfall. The average values of TC and E. coli were 1487.4 and 36.3 MPN/100 ml, respectively. TC concentrations/physicochemical parameters were met at least 2nd class water quality class and E. coli results were met "guideline value" (E. coli < 250 MPN/100 ml) of national regulation. Overall, among measured physicochemical parameters, rainfall had the strongest positive correlation (r = 0.377 for total coliforms and r = 0.466 for E. coli, p < 0.05) with both indicators, indicted that surface runoff due to rainfall is the main factor which effects microbial water quality in the study area. This study demonstrated the preliminary microbial water quality results (TC and E. coli) in the Imrahor Pond and can serve as a basis for developing more precise water quality monitoring and management studies in the future. PRACTITIONER POINTS: Prevalence of TC and E. coli in the surface and bottom waters of Imrahor Pond were investigated for the first time. Imrahor Pond was met guideline value of national regulations based on E. coli concentrations, in the study period. Surface runoff after rainfall was the main environmental factor which influenced the microbial water quality of the pond.


Assuntos
Lagoas , Qualidade da Água , Escherichia coli/fisiologia , Temperatura , Microbiologia da Água
3.
Front Microbiol ; 12: 660566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745021

RESUMO

Molecular diagnostic methods are increasingly applied for food and environmental analysis. Since several steps are involved in sample processing which can affect the outcome (e.g., adhesion of DNA to the sample matrix, inefficient precipitation of DNA, pipetting errors and (partial) loss of the DNA pellet during DNA isolation), quality control is essential at all processing levels. In soil microbiology, particular attention has been paid to the inorganic component of the sample matrix affecting DNA extractability. In water quality testing, however, this aspect has mostly been neglected so far, although it is conceivable that these mechanisms have a similar impact. The present study was therefore dedicated to investigate possible matrix effects on results of water quality analysis. Field testing in an aquatic environment with pronounced chemo-physical gradients [total suspended solids (TSS), inorganic turbidity, total organic carbon (TOC), and conductivity] indicated a negative association between DNA extractability (using a standard phenol/chloroform extraction procedure) and turbidity (spearman ρ = -0.72, p < 0.001, n = 21). Further detailed laboratory experiments on sediment suspensions confirmed the hypothesis of inorganic turbidity being the main driver for reduced DNA extractability. The observed effects, as known from soil samples, were also indicated to result from competitive effects for free charges on clay minerals, leading to adsorption of DNA to these inorganic particles. A protocol modification by supplementing the extraction buffer with salmon sperm DNA, to coat charged surfaces prior to cell lysis, was then applied on environmental water samples and compared to the standard protocol. At sites characterized by high inorganic turbidity, DNA extractability was significantly improved or made possible in the first place by applying the adapted protocol. This became apparent from intestinal enterococci and microbial source tracking (MST)-marker levels measured by quantitative polymerase chain reaction (qPCR) (100 to 10,000-fold median increase in target concentrations). The present study emphasizes the need to consider inorganic turbidity as a potential loss factor in DNA extraction from water-matrices. Negligence of these effects can lead to a massive bias, by up to several orders of magnitude, in the results of molecular MST and fecal pollution diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA