Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(3): 416-424, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38601208

RESUMO

Chinese hamster ovary (CHO) cells are crucial in biopharmaceutical production due to their scalability and capacity for human-like post-translational modifications. However, toxic proteins and membrane proteins are often difficult-to-express in living cells. Alternatively, cell-free protein synthesis can be employed. This study explores innovative strategies for enhancing the production of challenging proteins through the modification of CHO cells by investigating both, cell-based and cell-free approaches. A major result in our study involves the integration of a mutant eIF2 translation initiation factor and T7 RNA polymerase into CHO cell lysates for cell-free protein synthesis. This resulted in elevated yields, while eliminating the necessity for exogenous additions during cell-free production, thereby substantially enhancing efficiency. Additionally, we explore the potential of the Rosa26 genomic site for the integration of T7 RNA polymerase and cell-based tetracycline-controlled protein expression. These findings provide promising advancements in bioproduction technologies, offering flexibility to switch between cell-free and cell-based protein production as needed.

2.
Sci Rep ; 14(1): 6043, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472311

RESUMO

Shiga toxins (Stx) produced by pathogenic bacteria can cause mild to severe diseases in humans. Thus, the analysis of such toxins is of utmost importance. As an AB5 toxin, Stx consist of a catalytic A-subunit acting as a ribosome-inactivating protein (RIP) and a B-pentamer binding domain. In this study we synthesized the subunits and holotoxins from Stx and Stx2a using different cell-free systems, namely an E. coli- and CHO-based cell-free protein synthesis (CFPS) system. The functional activity of the protein toxins was analyzed in two ways. First, activity of the A-subunits was assessed using an in vitro protein inhibition assay. StxA produced in an E. coli cell-free system showed significant RIP activity at concentrations of 0.02 nM, whereas toxins synthesized in a CHO cell-free system revealed significant activity at concentrations of 0.2 nM. Cell-free synthesized StxA2a was compared to StxA2a expressed in E. coli cells. Cell-based StxA2a had to be added at concentrations of 20 to 200 nM to yield a significant RIP activity. Furthermore, holotoxin analysis on cultured HeLa cells using an O-propargyl-puromycin assay showed significant protein translation reduction at concentrations of 10 nM and 5 nM for cell-free synthesized toxins derived from E. coli and CHO systems, respectively. Overall, these results show that Stx can be synthesized using different cell-free systems while remaining functionally active. In addition, we were able to use CFPS to assess the activity of different Stx variants which can further be used for RIPs in general.


Assuntos
Escherichia coli , Toxinas Shiga , Humanos , Toxinas Shiga/metabolismo , Escherichia coli/genética , Sistema Livre de Células/metabolismo , Células HeLa , Biossíntese de Proteínas
3.
Methods Mol Biol ; 2762: 293-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315373

RESUMO

Although membrane proteins are abundant in nature, their investigation is limited due to bottlenecks in heterologous overexpression and consequently restricted accessibility for downstream applications. In this chapter, we address these challenges by presenting a fast and straightforward synthesis platform based on eukaryotic cell-free protein synthesis (CFPS) and an efficient solubilization strategy using styrene-maleic acid (SMA) copolymers. We demonstrate CFPS of TWIK-1, a dimeric ion channel, based on Sf21 (Spodoptera frugiperda) insect lysate showing homooligomerization and N-glycosylation enabled by endoplasmic reticulum-derived microsomes. Furthermore, we employ SMA copolymers for protein solubilization, which preserves the native-like microsomal environment. This approach not only retains the solubilized protein's suitability for downstream applications but also maintains the oligomerization and glycosylation of TWIK-1 post-solubilization. We validate the solubilization procedure using autoradiography, particle size analysis, and biomolecular fluorescence assay and confirm the very efficient, structurally intact solubilization of cell-free synthesized TWIK-1.


Assuntos
Maleatos , Poliestirenos , Proteínas de Membrana
4.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367508

RESUMO

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Assuntos
Vírus do Sarampo , Sarampo , Humanos , Vírus do Sarampo/genética , Anticorpos Neutralizantes , Testes de Neutralização , Vacina contra Sarampo/genética , Sarampo/prevenção & controle , Anticorpos Antivirais , Epitopos/genética , Hemaglutininas Virais/genética , Anticorpos Monoclonais
5.
Sci Rep ; 14(1): 1271, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218994

RESUMO

Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Animais , Humanos , NADP , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP3A/metabolismo , Microssomos/metabolismo , Luciferases , Microssomos Hepáticos/metabolismo , Mamíferos/metabolismo
6.
Bioengineering (Basel) ; 11(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247969

RESUMO

Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.

7.
Sci Rep ; 13(1): 15236, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709815

RESUMO

Modification of proteins with a broad range of chemical functionalities enables the investigation of protein structure and activity by manipulating polypeptides at single amino acid resolution. Indeed, various functional groups including bulky non-canonical amino acids like strained cyclooctenes could be introduced by the unique features of the binding pocket of the double mutant pyrrolysyl-tRNA synthetase (Y306A, Y384F), but the instable nature of the enzyme limits its application in vivo. Here, we constructed a cell-free protein production system, which increased the overall enzyme stability by combining different reaction compartments. Moreover, a co-expression approach in a one-pot reaction allowed straightforward site-specific fluorescent labeling of the functional complex membrane protein cystic fibrosis transmembrane conductance regulator. Our work provides a versatile platform for introducing various non-canonical amino acids into difficult-to-express proteins for structural and fluorescence based investigation of proteins activity.


Assuntos
Aminoacil-tRNA Sintetases , Antifibrinolíticos , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Sistema Livre de Células , Corantes
8.
Sci Rep ; 13(1): 6394, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076514

RESUMO

With more than 20 Food and Drug Administration (FDA)-approved poly (ethylene glycol) (PEG) modified drugs on the market, PEG is the gold standard polymer in bioconjugation. The coupling improves stability, efficiency and can prolong blood circulation time of therapeutic proteins. Even though PEGylation is described as non-toxic and non-immunogenic, reports accumulate with data showing allergic reactions to PEG. Since PEG is not only applied in therapeutics, but can also be found in foods and cosmetics, anti-PEG-antibodies can occur even without a medical treatment. Hypersensitivity to PEG thereby can lead to a reduced drug efficiency, fast blood clearance and in rare cases anaphylactic reactions. Therefore, finding alternatives for PEG is crucial. In this study, we present linear polyglycerol (LPG) for bioconjugation as an alternative polymer to PEG. We report the conjugation of LPG and PEG by click-chemistry to the glycoprotein erythropoietin (EPO), synthesized in a eukaryotic cell-free protein synthesis system. Furthermore, the influence of the polymers on EPOs stability and activity on a growth hormone dependent cell-line was evaluated. The similar characteristics of both bioconjugates show that LPGylation can be a promising alternative to PEGylation.


Assuntos
Eritropoetina , Polietilenoglicóis , Polímeros , Glicerol
9.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047271

RESUMO

Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K2P) within endogenous endoplasmic reticulum-derived microsomes. Exploiting the open nature of CFS, we investigate the cotranslational translocation of TREK-2 into the microsomes and suggest a cotranslational assembly with typical single-channel behavior in planar lipid-bilayer electrophysiology. The heteromeric assembly of K2P channels is a contentious matter, accordingly we prove the successful assembly of TREK-2 with TWIK-1 using a biomolecular fluorescence complementation assay, Western blot analysis and autoradiography. The results demonstrate that TREK-2 homodimer assembly is the initial step, followed by heterodimer formation with the nascent TWIK-1, providing evidence of the intergroup heterodimerization of TREK-2 and TWIK-1 in eukaryotic CFS. Since K2P channels are involved in various pathophysiological conditions, including pain and nociception, CFS paves the way for in-depth functional studies and related pharmacological interventions. This study highlights the versatility of the eukaryotic CFS platform for investigating ion channel assembly in a native-like environment.


Assuntos
Eucariotos , Canais de Potássio de Domínios Poros em Tandem , Eucariotos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sistema Livre de Células/metabolismo , Dimerização , Bioensaio
10.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769142

RESUMO

G protein-coupled receptors (GPCRs) are of outstanding pharmacological interest as they are abundant in cell membranes where they perform diverse functions that are closely related to the vitality of cells. The analysis of GPCRs in natural membranes is laborious, as established methods are almost exclusively cell culture-based and only a few methods for immobilization in a natural membrane outside the cell are known. Within this study, we present a one-step, fast and robust immobilization strategy of the GPCR glucagon-like peptide 1 receptor (GLP-1R). GLP-1R was synthesized in eukaryotic lysates harboring endogenous endoplasmic reticulum-derived microsomes enabling the embedment of GLP-1R in a natural membrane. Interestingly, we found that these microsomes spontaneously adsorbed to magnetic Neutravidin beads thus providing immobilized membrane protein preparations which required no additional manipulation of the target receptor or its supporting membrane. The accessibility of the extracellular domain of membrane-embedded and bead-immobilized GLP-1R was demonstrated by bead-based enzyme-linked immunosorbent assay (ELISA) using GLP-1R-specific monoclonal antibodies. In addition, ligand binding of immobilized GLP-1R was verified in a radioligand binding assay. In summary, we present an easy and straightforward synthesis and immobilization methodology of an active GPCR which can be beneficial for studying membrane proteins in general.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptores Acoplados a Proteínas G , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo
11.
Sci Rep ; 12(1): 20742, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456667

RESUMO

Understanding the assembly mechanism and function of membrane proteins is a fundamental problem in biochemical research. Among the membrane proteins, G protein-coupled receptors (GPCRs) represent the largest class in the human body and have long been considered to function as monomers. Nowadays, the oligomeric assembly of GPCRs is widely accepted, although the functional importance and therapeutic intervention remain largely unexplored. This is partly due to difficulties in the heterologous production of membrane proteins. Cell-free protein synthesis (CFPS) with its endogenous endoplasmic reticulum-derived structures has proven as a technique to address this issue. In this study, we investigate for the first time the conceptual CFPS of a heteromeric GPCR, the γ-aminobutyric acid receptor type B (GABAB), from its protomers BR1 and BR2 using a eukaryotic cell-free lysate. Using a fluorescence-based proximity ligation assay, we provide evidence for colocalization and thus suggesting heterodimerization. We prove the heterodimeric assembly by a bioluminescence resonance energy transfer saturation assay providing the manufacturability of a heterodimeric GPCR by CFPS. Additionally, we show the binding of a fluorescent orthosteric antagonist, demonstrating the feasibility of combining the CFPS of GPCRs with pharmacological applications. These results provide a simple and powerful experimental platform for the synthesis of heteromeric GPCRs and open new perspectives for the modelling of protein-protein interactions. Accordingly, the presented technology enables the targeting of protein assemblies as a new interface for pharmacological intervention in disease-relevant dimers.


Assuntos
Eucariotos , Receptores de GABA , Sistema Livre de Células , Ácido gama-Aminobutírico , Proteínas de Membrana
12.
Front Bioeng Biotechnol ; 10: 964396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394036

RESUMO

Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal enzymes that catalyze the oxyfunctionalization of non-activated hydrocarbons, making them valuable biocatalysts. Despite the increasing interest in UPOs that has led to the identification of thousands of putative UPO genes, only a few of these have been successfully expressed and characterized. There is currently no universal expression system in place to explore their full potential. Cell-free protein synthesis has proven to be a sophisticated technique for the synthesis of difficult-to-express proteins. In this work, we aimed to establish an insect-based cell-free protein synthesis (CFPS) platform to produce UPOs. CFPS relies on translationally active cell lysates rather than living cells. The system parameters can thus be directly manipulated without having to account for cell viability, thereby making it highly adaptable. The insect-based lysate contains translocationally active, ER-derived vesicles, called microsomes. These microsomes have been shown to allow efficient translocation of proteins into their lumen, promoting post-translational modifications such as disulfide bridge formation and N-glycosylations. In this study the ability of a redox optimized, vesicle-based, eukaryotic CFPS system to synthesize functional UPOs was explored. The influence of different reaction parameters as well as the influence of translocation on enzyme activity was evaluated for a short UPO from Marasmius rotula and a long UPO from Agrocybe aegerita. The capability of the CFPS system described here was demonstrated by the successful synthesis of a novel UPO from Podospora anserina, thus qualifying CFPS as a promising tool for the identification and evaluation of novel UPOs and variants thereof.

13.
Enzyme Microb Technol ; 161: 110110, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35939898

RESUMO

The ability to catalyze diverse reactions with relevance for chemical and pharmaceutical research and industry has led to an increasing interest in fungal enzymes. There is still an enormous potential considering the sheer amount of new enzymes from the huge diversity of fungi. Most of these fungal enzymes have not been characterized yet due to the lack of high throughput synthesis and analysis methods. This bottleneck could be overcome by means of cell-free protein synthesis. In this study, cell-free protein synthesis based on eukaryotic cell lysates was utilized to produce a functional glycoside hydrolase (GH78) from the soft-rot fungus Xylaria polymorpha (Ascomycota). The enzyme was successfully synthesized under different reaction conditions. We characterized its enzymatic activities and immobilized the protein via FLAG-Tag interaction. Alteration of several conditions including reaction temperature, template design and lysate supplementation had an influence on the activity of cell-free synthesized GH78. Consequently this led to a production of purified GH78 with a specific activity of 15.4 U mg- 1. The results of this study may be foundational for future high throughput fungal enzyme screenings, including substrate spectra analysis and mutant screenings.


Assuntos
Ascomicetos , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química
14.
Front Bioeng Biotechnol ; 10: 873906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573244

RESUMO

Incorporation of noncanonical amino acids (ncAAs) with bioorthogonal reactive groups by amber suppression allows the generation of synthetic proteins with desired novel properties. Such modified molecules are in high demand for basic research and therapeutic applications such as cancer treatment and in vivo imaging. The positioning of the ncAA-responsive codon within the protein's coding sequence is critical in order to maintain protein function, achieve high yields of ncAA-containing protein, and allow effective conjugation. Cell-free ncAA incorporation is of particular interest due to the open nature of cell-free systems and their concurrent ease of manipulation. In this study, we report a straightforward workflow to inquire ncAA positions in regard to incorporation efficiency and protein functionality in a Chinese hamster ovary (CHO) cell-free system. As a model, the well-established orthogonal translation components Escherichia coli tyrosyl-tRNA synthetase (TyrRS) and tRNATyrCUA were used to site-specifically incorporate the ncAA p-azido-l-phenylalanine (AzF) in response to UAG codons. A total of seven ncAA sites within an anti-epidermal growth factor receptor (EGFR) single-chain variable fragment (scFv) N-terminally fused to the red fluorescent protein mRFP1 and C-terminally fused to the green fluorescent protein sfGFP were investigated for ncAA incorporation efficiency and impact on antigen binding. The characterized cell-free dual fluorescence reporter system allows screening for ncAA incorporation sites with high incorporation efficiency that maintain protein activity. It is parallelizable, scalable, and easy to operate. We propose that the established CHO-based cell-free dual fluorescence reporter system can be of particular interest for the development of antibody-drug conjugates (ADCs).

15.
Front Mol Biosci ; 9: 832379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586195

RESUMO

The investigation of protein structures, functions and interactions often requires modifications to adapt protein properties to the specific application. Among many possible methods to equip proteins with new chemical groups, the utilization of orthogonal aminoacyl-tRNA synthetase/tRNA pairs enables the site-specific incorporation of non-canonical amino acids at defined positions in the protein. The open nature of cell-free protein synthesis reactions provides an optimal environment, as the orthogonal components do not need to be transported across the cell membrane and the impact on cell viability is negligible. In the present work, it was shown that the expression of orthogonal aminoacyl-tRNA synthetases in CHO cells prior to cell disruption enhanced the modification of the pharmaceutically relevant adenosine A2a receptor. For this purpose, in complement to transient transfection of CHO cells, an approach based on CRISPR/Cas9 technology was selected to generate a translationally active cell lysate harboring endogenous orthogonal aminoacyl-tRNA synthetase.

16.
Front Bioeng Biotechnol ; 10: 896751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519622

RESUMO

The ongoing pandemic caused by the novel coronavirus (SARS-CoV-2) has led to more than 445 million infections and the underlying disease, COVID-19, resulted in more than 6 million deaths worldwide. The scientific world is already predicting future zoonotic diseases. Hence, rapid response systems are needed to tackle future epidemics and pandemics. Here, we present the use of eukaryotic cell-free systems for the rapid response to novel zoonotic diseases represented by SARS-CoV-2. Non-structural, structural and accessory proteins encoded by SARS-CoV-2 were synthesized by cell-free protein synthesis in a fast and efficient manner. The inhibitory effect of the non-structural protein 1 on protein synthesis could be shown in vitro. Structural proteins were quantitatively detected by commercial antibodies, therefore facilitating cell-free systems for the validation of available antibodies. The cytotoxic envelope protein was characterized in electrophysiological planar lipid bilayer measurements. Hence, our study demonstrates the potential of eukaryotic cell-free systems as a rapid response mechanism for the synthesis, functional characterization and antibody validation against a viral pathogen.

17.
Toxins (Basel) ; 14(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448842

RESUMO

Cell-free protein synthesis (CFPS) represents a versatile key technology for the production of toxic proteins. As a cell lysate, rather than viable cells, is used, the toxic effects on the host organism can be circumvented. The open nature of cell-free systems allows for the addition of supplements affecting protein concentration and folding. Here, we present the cell-free synthesis and functional characterization of two AB5 toxins, namely the cholera toxin (Ctx) and the heat-labile enterotoxin (LT), using two eukaryotic cell-free systems based on Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cells. Through an iterative optimization procedure, the synthesis of the individual AB5 toxins was established, and the formation of multimeric structures could be shown by autoradiography. A functional analysis was performed using cell-based assays, thereby demonstrating that the LT complex induced the characteristic cell elongation of target cells after 24 h. The LT complex induced cell death at higher concentrations, starting at an initial concentration of 5 nM. The initial toxic effects of the Ctx multimer could already be detected at 4 nM. The detection and characterization of such AB5 toxins is of utmost importance, and the monitoring of intracellular trafficking facilitates the further identification of the mechanism of action of these toxins. We showed that the B-subunit of LT (LTB) could be fluorescently labeled using an LTB-Strep fusion protein, which is a proof-of-concept for future Trojan horse applications. Further, we performed a mutational analysis of the CtxA subunit as its template was modified, and an amber stop codon was inserted into CtxA's active site. Subsequently, a non-canonical amino acid was site-specifically incorporated using bio-orthogonal systems. Finally, a fluorescently labeled CtxA protein was produced using copper-catalyzed click reactions as well as a Staudinger ligation. As expected, the modified Ctx multimer no longer induced toxic effects. In our study, we showed that CFPS could be used to study the active centers of toxins by inserting mutations. Additionally, this methodology can be applied for the design of Trojan horses and targeted toxins, as well as enabling the intracellular trafficking of toxins as a prerequisite for the analysis of the toxin's mechanism of action.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Animais , Toxinas Bacterianas/metabolismo , Células CHO , Sistema Livre de Células/metabolismo , Toxina da Cólera/química , Toxina da Cólera/toxicidade , Cricetinae , Cricetulus , Enterotoxinas/genética , Proteínas de Escherichia coli/genética
18.
Toxins (Basel) ; 13(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822591

RESUMO

The tripartite enterotoxin Hemolysin BL (Hbl) has been widely characterized as a hemolytic and cytotoxic virulence factor involved in foodborne diarrheal illness caused by Bacillus cereus. Previous studies have described the formation of the Hbl complex and aimed to identify the toxin's mode of action. In this study, we analyzed the assembly of Hbl out of its three individual subunits L1, L2 and B in a soluble as well as a putative membrane bound composition using a Chinese hamster ovary (CHO) cell-free system. Subunits were either coexpressed or synthesized individually in separate cell-free reactions and mixed together afterwards. Hemolytic activity of cell-free synthesized subunits was demonstrated on 5% sheep blood agar and identified both synthesis procedures, coexpression as well as individual synthesis of each subunit, as functional for the synthesis of an active Hbl complex. Hbl's ability to perforate cell membranes was evaluated using a propidium iodide uptake assay. These data suggested that coexpressed Hbl subunits augmented cytotoxic activity with increasing concentrations. Further, a pre-pore-complex of L1-L2 showed cytotoxic effects suggesting the possibility of an interaction between the cell membrane and the pre-pore-complex. Overall, this study shows that cell-free protein synthesis is a fast and efficient way to study the assembly of multiple protein subunits in soluble as well as vesicular fractions.


Assuntos
Bacillus cereus/patogenicidade , Proteínas de Bactérias/toxicidade , Proteínas Hemolisinas/toxicidade , Hemólise , Animais , Células CHO , Membrana Celular/metabolismo , Sistema Livre de Células , Cricetinae , Cricetulus , Ovinos
19.
Methods Mol Biol ; 2305: 175-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33950390

RESUMO

Cell-free protein synthesis (CFPS) enables the development of antibody conjugates, such as fluorophore conjugates and antibody-drug conjugates (ADCs), in a rapid and straightforward manner. In the first part, we describe the cell-free synthesis of antibodies containing fluorescent non-canonical amino acids (ncaa) by using pre-charged tRNA. In the second part, we describe the cell-free synthesis of antibodies containing ncaa by using an orthogonal system, followed by the site-specific conjugation of the fluorescent dye DyLight 650-phosphine. The expression of the antibodies containing ncaa was analyzed by SDS-PAGE, followed by autoradiography and the labeling by in-gel fluorescence. Two different fluorescently labeled antibodies could be generated.


Assuntos
Aminoácidos/metabolismo , Anticorpos/metabolismo , Sistema Livre de Células/metabolismo , Imunoconjugados/química , Aminoacil-tRNA Sintetases , Animais , Cricetulus , Eucariotos/metabolismo , Corantes Fluorescentes/metabolismo , Biossíntese de Proteínas , Proteínas/química , RNA de Transferência/metabolismo
20.
RSC Adv ; 11(27): 16285-16296, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35479141

RESUMO

Calcium imaging is an important functional tool for analysing ion channels, transporters and pumps for drug screening in living cells. Depicted eukaryotic cell-free systems utilize microsomes, derived from the endoplasmic reticulum to incorporate the synthesized membrane proteins-like ion channels. Carboxylesterase is required to cleave the acetoxymethyl ester moiety of the chemical calcium indicators in order to ensure its immobility across the endoplasmic reticulum membrane. Absence or an inadequate amount of carboxylesterase in the endoplasmic reticulum of different eukaryotic cells poses a hindrance to perform calcium imaging in microsomes. In this work, we try to overcome this drawback and adapt the cell-based calcium imaging principle to a cell-free protein synthesis platform. Carboxylesterase synthesized in a Spodoptera frugiperda Sf21 lysate translation system is established as a viable calcium imaging tool in microsomes. Cell-free synthesized carboxylesterase inside microsomes is validated with esterase and dye loading assays. Native proteins from the endoplasmic reticulum, such as ryanodine channels and calcium ATPase, are analysed. Cell-free synthesized transient receptor potential channels are used as model proteins to demonstrate the realization of this concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA