Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834029

RESUMO

The endothelial glycocalyx is a dynamic signaling surface layer that is involved in the maintenance of cellular homeostasis. The glycocalyx has a very diverse composition, with glycoproteins, proteoglycans, and glycosaminoglycans interacting with each other to form a mesh-like structure. Due to its highly interactive nature, little is known about the relative contribution of each glycocalyx constituent to its overall function. Investigating the individual roles of the glycocalyx components to cellular functions and system physiology is challenging, as the genetic manipulation of animals that target specific glycocalyx components may result in the development of a modified glycocalyx. Thus, it is crucial that genetically modified animal models for glycocalyx components are characterized and validated before the development of mechanistic studies. Among the glycocalyx components, glypican 1, which acts through eNOS-dependent mechanisms, has recently emerged as a player in cardiovascular diseases. Whether glypican 1 regulates eNOS in physiological conditions is unclear. Herein, we assessed how the deletion of glypican 1 affects the development of the pulmonary endothelial glycocalyx and the impact on eNOS activity and endothelial function. Male and female 5-9-week-old wild-type and glypican 1 knockout mice were used. Transmission electron microscopy, immunofluorescence, and immunoblotting assessed the glycocalyx structure and composition. eNOS activation and content were assessed by immunoblotting; nitric oxide production was assessed by the Griess reaction. The pulmonary phenotype was evaluated by histological signs of lung injury, in vivo measurement of lung mechanics, and pulmonary ventilation. Glypican 1 knockout mice showed a modified glycocalyx with increased glycocalyx thickness and heparan sulfate content and decreased expression of syndecan 4. These alterations were associated with decreased phosphorylation of eNOS at S1177. The production of nitric oxides was not affected by the deletion of glypican 1, and the endothelial barrier was preserved in glypican 1 knockout mice. Pulmonary compliance was decreased, and pulmonary ventilation was unaltered in glypican 1 knockout mice. Collectively, these data indicate that the deletion of glypican 1 may result in the modification of the glycocalyx without affecting basal lung endothelial function, validating this mouse model as a tool for mechanistic studies that investigate the role of glypican 1 in lung endothelial function.


Assuntos
Glicocálix , Glipicanas , Camundongos , Animais , Masculino , Feminino , Glipicanas/genética , Glipicanas/metabolismo , Glicocálix/metabolismo , Camundongos Knockout , Células Endoteliais/metabolismo , Pulmão/metabolismo
2.
J Biol Chem ; 299(4): 103067, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841483

RESUMO

Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.


Assuntos
Dinaminas , Glicólise , Hipertensão Pulmonar , Dinâmica Mitocondrial , Proteínas Monoméricas de Ligação ao GTP , Proteína rhoA de Ligação ao GTP , Animais , Dinaminas/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ovinos , Modelos Animais de Doenças
3.
Front Physiol ; 13: 947537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991176

RESUMO

In acute lung injury (ALI), the NF-κB-mediated downregulation of Sox18 gene expression leads to the disruption of the pulmonary endothelial barrier. Previous studies have suggested that the action of NF-κB as a transcriptional repressor also requires the action of class I histone deacetylases (HDACs). Thus, the purpose of this study was to investigate and further delineate the mechanism of Sox18 repression during lipopolysaccharide (LPS) induced ALI. Using selective inhibitors and specific siRNA-driven depletion of HDACs 1-3 in human lung microvascular endothelial cells (HLMVEC) we were able to demonstrate a critical role for HDACs 1 and 2 in the LPS-mediated repression of Sox18 gene expression and the loss of endothelial monolayer integrity. Moreover, our data demonstrate that HDAC1 associates with a transcription-repressive complex within the NF-κB-binding site of Sox18 promoter. Further, we were able to show that the selective inhibitor of HDAC1, tacedinaline, significantly reduced the endothelial permeability and injury associated with LPS challenge in the mouse lung. Taken together, our data demonstrate, for the first time, that transcription repressors HDACs 1 and 2 are involved in pathological mechanism of ALI and can be considered as therapeutic targets.

4.
Phys Rev E ; 105(1-1): 014207, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193304

RESUMO

We describe analytically, and simulate numerically, traveling waves with oscillatory tails in a bistable, piecewise-linear reaction-diffusion-advection system of the FitzHugh-Nagumo type with linear cross-diffusion and cross-advection terms of opposite signs. We explore the dynamics of two wave types, namely, solitary pulses and their infinite sequences, i.e., periodic wave trains. The effects of cross diffusion and cross advection on wave profiles and speed of propagation are analyzed. For pulses, in the speed diagram splitting of a curve into several branches occurs, corresponding to different waves (wave branching). For wave trains, in the dispersion relation diagram there are oscillatory curves and the discontinuous curve of an isola with two branches. The corresponding wave trains have symmetric or asymmetric profiles. Numerical simulations show that for large values of the period there exist two wave trains, which come closer and closer together and are subject to fusion into one when the value of the period is decreasing. Other types of waves are also briefly discussed.

5.
Front Physiol ; 13: 1066515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620216

RESUMO

Mechanical strain contributes to ventilator-induced lung injury (VILI) through multi-factorial and complex mechanisms that remain unresolved. Prevailing evidence suggests that the loss of pulmonary endothelial tight junctions (TJs) plays a critical role. TJs are dynamically regulated by physiologic and hemodynamic forces to stabilize the endothelial barrier. The transcription factor sex-determining region Y-box (SOX)-18 is important in regulating blood vessel development and vascular permeability through its ability to regulate the transcription of Claudin-5, an endothelial TJ protein. Previously, we demonstrated that SOX18 expression is increased by shear stress in the pulmonary endothelium. Therefore, in this study, we investigated how mechanical strain mediated through cyclic stretch affects the SOX18/Claudin-5 regulatory axis. Our data demonstrate that SOX18 and Claudin-5 are downregulated in human lung microvascular endothelial cells (HLMVEC) exposed to cyclic stretch and the mouse lung exposed to high tidal mechanical ventilation. Overexpression of SOX18 reduced the loss of Claudin-5 expression in HLMVEC with cyclic stretch and preserved endothelial barrier function. Additionally, overexpression of Claudin-5 in HLMVEC ameliorated barrier dysfunction in HLMVEC exposed to cyclic stretch, although SOX18 expression was not enhanced. Finally, we found that the targeted overexpression of SOX18 in the pulmonary vasculature preserved Claudin-5 expression in the lungs of mice exposed to HTV. This, in turn reduced lung vascular leak, attenuated inflammatory lung injury, and preserved lung function. Together, these data suggest that enhancing SOX18 expression may prove a useful therapy to treat patients with ventilator-induced lung injury.

6.
J Biol Chem ; 297(2): 100946, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252457

RESUMO

Phosphodiesterase 3A (PDE3A) selectively cleaves the phosphodiester bond of cAMP and is inhibited by cGMP, making it an important regulator of cAMP-cGMP signaling crosstalk in the pulmonary vasculature. In addition, the nitric oxide-cGMP axis is known to play an important role in maintaining endothelial barrier function. However, the potential role of protein kinase G-Iα (PKG-Iα) in this protective process is unresolved and was the focus of our study. We describe here a novel mechanism regulating PDE3A activity, which involves a PKG-Iα-dependent inhibitory phosphorylation of PDE3A at serine 654. We also show that this phosphorylation is critical for maintaining intracellular cAMP levels in the pulmonary endothelium and endothelial barrier integrity. In an animal model of acute lung injury (ALI) induced by challenging mice with lipopolysaccharide (LPS), an increase in PDE3 activity and a decrease in cAMP levels in lung tissue was associated with reduced PKG activity upon PKG-Iα nitration at tyrosine 247. The peroxynitrite scavenger manganese (III) tetrakis(1-methyl-4-pyridyl)porphyrin prevented this increase in PDE3 activity in LPS-exposed lungs. In addition, site-directed mutagenesis of PDE3A to replace serine 654 with alanine yielded a mutant protein that was insensitive to PKG-dependent regulation. Taken together, our data demonstrate a novel functional link between nitrosative stress induced by LPS during ALI and the downregulation of barrier-protective intracellular cAMP levels. Our data also provide new evidence that PKG-Iα is critical for endothelial barrier maintenance and that preservation of its catalytic activity may be efficacious in ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Proteínas Quinases Dependentes de GMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Nucleotídeos Cíclicos , Animais , Camundongos , Fosforilação , Transdução de Sinais
7.
Chaos ; 31(3): 033141, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33810726

RESUMO

We study a tristable piecewise-linear reaction-diffusion system, which approximates a quintic FitzHugh-Nagumo model, with linear cross-diffusion terms of opposite signs. Basic nonlinear waves with oscillatory tails, namely, fronts, pulses, and wave trains, are described. The analytical construction of these waves is based on the results for the bistable case [Zemskov et al., Phys. Rev. E 77, 036219 (2008) and Phys. Rev. E 95, 012203 (2017) for fronts and for pulses and wave trains, respectively]. In addition, these constructions allow us to describe novel waves that are specific to the tristable system. Most interesting is the pulse solution with a zigzag-shaped profile, the bright-dark pulse, in analogy with optical solitons of similar shapes. Numerical simulations indicate that this wave can be stable in the system with asymmetric thresholds; there are no stable bright-dark pulses when the thresholds are symmetric. In the latter case, the pulse splits up into a tristable front and a bistable one that propagate with different speeds. This phenomenon is related to a specific feature of the wave behavior in the tristable system, the multiwave regime of propagation, i.e., the coexistence of several waves with different profile shapes and propagation speeds at the same values of the model parameters.

8.
Redox Biol ; 41: 101878, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33578126

RESUMO

Acute lung injury (ALI) is a devastating clinical syndrome with no effective therapies. Inflammasome activation has been reported to play a critical role in the initiation and progression of ALI. The molecular mechanisms involved in regulating the activation of inflammasome in ALI remains unresolved, although increases in mitochondrial derived reactive oxygen species (mito-ROS) are involved. Our previous work has shown that the mitochondrial redistribution of uncoupled eNOS impairs mitochondrial bioenergetics and increases mito-ROS generation. Thus, the focus of our study was to determine if lipopolysaccharide (LPS)-mediated inflammasome activation involves the mitochondrial redistribution of uncoupled eNOS. Our data show that the increase in mito-ROS involved in LPS-mediated inflammasome activation is associated with the disruption of mitochondrial bioenergetics in human lung microvascular endothelial cells (HLMVEC) and the mitochondrial redistribution of eNOS. These effects are dependent on RhoA-ROCK signaling and are mediated via increased phosphorylation of eNOS at Threonine (T)-495. A derivative of the mitochondrial targeted Szeto-Schiller peptide (SSP) attached to the antioxidant Tiron (T-SSP), significantly attenuated LPS-mediated mito-ROS generation and inflammasome activation in HLMVEC. Further, T-SSP attenuated mitochondrial superoxide production in a mouse model of sepsis induced ALI. This in turn significantly reduced the inflammatory response and attenuated lung injury. Thus, our findings show that the mitochondrial redistribution of uncoupled eNOS is intimately involved in the activation of the inflammatory response in ALI and implicate attenuating mito-ROS as a therapeutic strategy in humans.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo III , Espécies Reativas de Oxigênio/metabolismo
9.
Redox Biol ; 38: 101785, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221570

RESUMO

Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The specific mechanisms involved in VILI-induced pulmonary capillary leakage, a key pathologic feature of VILI are still far from resolved. The mechanoreceptor, transient receptor potential cation channel subfamily V member 4, TRPV4 plays a key role in the development of VILI through unresolved mechanism. Endothelial nitric oxide synthase (eNOS) uncoupling plays an important role in sepsis-mediated ARDS so in this study we investigated whether there is a role for eNOS uncoupling in the barrier disruption associated with TRPV4 activation during VILI. Our data indicate that the TRPV4 agonist, 4α-Phorbol 12,13-didecanoate (4αPDD) induces pulmonary arterial endothelial cell (EC) barrier disruption through the disruption of mitochondrial bioenergetics. Mechanistically, this occurs via the mitochondrial redistribution of uncoupled eNOS secondary to a PKC-dependent phosphorylation of eNOS at Threonine 495 (T495). A specific decoy peptide to prevent T495 phosphorylation reduced eNOS uncoupling and mitochondrial redistribution and preserved PAEC barrier function under 4αPDD challenge. Further, our eNOS decoy peptide was able to preserve lung vascular integrity in a mouse model of VILI. Thus, we have revealed a functional link between TRPV4 activation, PKC-dependent eNOS phosphorylation at T495, and EC barrier permeability. Reducing pT495-eNOS could be a new therapeutic approach for the prevention of VILI.


Assuntos
Células Endoteliais , Mitocôndrias/fisiologia , Canais de Cátion TRPV , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Metabolismo Energético , Humanos , Camundongos , Permeabilidade , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
10.
Redox Biol ; 36: 101679, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32818797

RESUMO

The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.


Assuntos
Autofagia , Pneumopatias , Animais , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio
11.
Phys Rev E ; 101(3-1): 032208, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289978

RESUMO

One-dimensional localized sequences of bound (coupled) traveling pulses, wave trains with a finite number of pulses, are described in a piecewise-linear reaction-diffusion system of the FitzHugh-Nagumo type with linear cross-diffusion terms of opposite signs. The simplest case of two bound pulses, the paired-pulse waves (pulse pairs), is solved analytically. The solutions contain oscillatory tails in the wave profiles so that the pulse pairs consist of a double-peak core and wavy edges. Several pulse pairs with different profile shapes and propagation speeds can appear for the same parameter values of the model when the cross diffusion is dominant. The more general case of many bound pulses, multipulse waves, is studied numerically. It is shown that, dependent on the values of the cross-diffusion coefficients, the multipulse waves upon collision can pass through one another with unchanged size and shape, exhibiting soliton behavior. Moreover, multipulse collisions with the system boundaries can generate a rich variety of wave transformations: the transition from the multipulse waves to pulse-front waves and further to simple fronts or to annihilation as well the transition to solitary pulses or to multipulse waves with lower numbers of pulses. Analytical and numerical results for the pulse pairs agree well with each other.

12.
Phys Rev E ; 99(6-1): 062214, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330591

RESUMO

Oscillatory reaction-diffusion fronts are described analytically in a piecewise-linear approximation of the FitzHugh-Nagumo equations with linear cross-diffusion terms, which correspond to a pursuit-evasion situation. Fundamental dynamical regimes of front propagation into a stable and into an unstable state are studied, and the shape of the waves for both regimes is explored in detail. We find that oscillations in the wave profile may either be negligible due to rapid attenuation or noticeable if the damping is slow or vanishes. In the first case, we find fronts that display a monotonic profile of the kink type, whereas in the second case the oscillations give rise to fronts with wavy tails. Further, the oscillations may be damped with exponential decay or undamped so that a saw-shaped pattern forms. Finally, we observe an unexpected feature in the behavior of both types of the oscillatory waves: the coexistence of several fronts with different profile shapes and propagation speeds for the same parameter values of the model, i.e., a multifront regime of wave propagation.

13.
Antioxid Redox Signal ; 31(12): 819-842, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30623676

RESUMO

Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.


Assuntos
Pneumopatias/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/fisiopatologia , Animais , Fenômenos Biomecânicos , Humanos , Pneumopatias/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Transdução de Sinais , Doenças Vasculares/metabolismo
14.
Phys Rev E ; 97(6-1): 062206, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011462

RESUMO

We explore traveling waves with oscillatory tails in a bistable piecewise linear reaction-diffusion system of the FitzHugh-Nagumo type with linear cross diffusion. These waves differ fundamentally from the standard simple fronts of the kink type. In contrast to kinks, the waves studied here have a complex shape profile with a front-back-front (a pulse-front) pattern. The characteristic feature of such pulse-front waves is a hybrid type of the speed diagram, which on the one hand reflects the typical dynamical behavior of the fronts in the FitzHugh-Nagumo model, related to the nonequilibrium Ising-Bloch bifurcation, and on the other hand exhibits also the solitary pulse scenario where several waves appear simultaneously with different speeds of propagation. We describe analytically the wave profiles and heteroclinic trajectories in the phase plane and discuss their morphology and transformation. The phenomena of wave formation and propagation are also studied by numerical simulations of the model partial differential equations. These simulations support the view that the pulse-front waves are constructed of fronts and pulses.

15.
Am J Respir Cell Mol Biol ; 59(3): 334-345, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652520

RESUMO

Although hemolytic anemia-associated pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH) are more common than the prevalence of idiopathic PAH alone, the role of hemolysis in the development of PAH is poorly characterized. We hypothesized that hemolysis independently contributes to PAH pathogenesis via endothelial barrier dysfunction with resulting perivascular edema and inflammation. Plasma samples from patients with and without PAH (both confirmed by right heart catheterization) were used to measure free hemoglobin (Hb) and its correlation with PAH severity. A sugen (50 mg/kg)/hypoxia (3 wk)/normoxia (2 wk) rat model was used to elucidate the role of free Hb/heme pathways in PAH. Human lung microvascular endothelial cells were used to study heme-mediated endothelial barrier effects. Our data indicate that patients with PAH have increased levels of free Hb in plasma that correlate with PAH severity. There is also a significant accumulation of free Hb and depletion of haptoglobin in the rat model. In rats, perivascular edema was observed at early time points concomitant with increased infiltration of inflammatory cells. Heme-induced endothelial permeability in human lung microvascular endothelial cells involved activation of the p38/HSP27 pathway. Indeed, the rat model also exhibited increased activation of p38/HSP27 during the initial phase of PH. Surprisingly, despite the increased levels of hemolysis and heme-mediated signaling, there was no heme oxygenase-1 activation. This can be explained by observed destabilization of HIF-1a during the first 2 weeks of PH regardless of hypoxic conditions. Our data suggest that hemolysis may play a significant role in PAH pathobiology.


Assuntos
Hemoglobinas/metabolismo , Hemólise/fisiologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia/complicações , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Remodelação Vascular/fisiologia
16.
Am J Respir Cell Mol Biol ; 58(5): 614-624, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29115856

RESUMO

One of the early events in the progression of LPS-mediated acute lung injury in mice is the disruption of the pulmonary endothelial barrier resulting in lung edema. However, the molecular mechanisms by which the endothelial barrier becomes compromised remain unresolved. The SRY (sex-determining region on the Y chromosome)-related high-mobility group box (Sox) group F family member, SOX18, is a barrier-protective protein through its ability to increase the expression of the tight junction protein CLDN5. Thus, the purpose of this study was to determine if downregulation of the SOX18-CLDN5 axis plays a role in the pulmonary endothelial barrier disruption associated with LPS exposure. Our data indicate that both SOX18 and CLDN5 expression is decreased in two models of in vivo LPS exposure (intraperitoneal, intratracheal). A similar downregulation was observed in cultured human lung microvascular endothelial cells (HLMVECs) exposed to LPS. SOX18 overexpression in HLMVECs or in the mouse lung attenuated the LPS-mediated vascular barrier disruption. Conversely, reduced CLDN5 expression (siRNA) reduced the HLMVEC barrier-protective effects of SOX18 overexpression. The mechanism by which LPS decreases SOX18 expression was identified as transcriptional repression through binding of NF-κB (p65) to a SOX18 promoter sequence located between -1,082 and -1,073 bp with peroxynitrite contributing to LPS-mediated NF-κB activation. We conclude that NF-κB-dependent decreases in the SOX18-CLDN5 axis are essentially involved in the disruption of human endothelial cell barrier integrity associated with LPS-mediated acute lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Lipopolissacarídeos , Pulmão/irrigação sanguínea , NF-kappa B/metabolismo , Edema Pulmonar/metabolismo , Fatores de Transcrição SOXF/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Sítios de Ligação , Células Cultivadas , Claudina-5/genética , Claudina-5/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Ácido Peroxinitroso/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/genética , Edema Pulmonar/patologia , Fatores de Transcrição SOXF/genética , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
17.
Adv Exp Med Biol ; 967: 105-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29047084

RESUMO

The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Antioxidantes/metabolismo , Permeabilidade Capilar , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Modelos Biológicos , Oxirredução , Estresse Oxidativo , Síndrome do Desconforto Respiratório/fisiopatologia , Transdução de Sinais
18.
Phys Rev E ; 95(1-1): 012203, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208357

RESUMO

We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.

19.
Free Radic Biol Med ; 102: 217-228, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838434

RESUMO

The molecular mechanisms by which the endothelial barrier becomes compromised during lipopolysaccharide (LPS) mediated acute lung injury (ALI) are still unresolved. We have previously reported that the disruption of the endothelial barrier is due, at least in part, to the uncoupling of endothelial nitric oxide synthase (eNOS) and increased peroxynitrite-mediated nitration of RhoA. The purpose of this study was to elucidate the molecular mechanisms by which LPS induces eNOS uncoupling during ALI. Exposure of pulmonary endothelial cells (PAEC) to LPS increased pp60Src activity and this correlated with an increase in nitric oxide (NO) production, but also an increase in NOS derived superoxide, peroxynitrite formation and 3-nitrotyrosine (3-NT) levels. These effects could be simulated by the over-expression of a constitutively active pp60Src (Y527FSrc) mutant and attenuated by over-expression of dominant negative pp60Src mutant or reducing pp60Src expression. LPS induces both RhoA nitration and endothelial barrier disruption and these events were attenuated when pp60Src expression was reduced. Endothelial NOS uncoupling correlated with an increase in the levels of asymmetric dimethylarginine (ADMA) in both LPS exposed and Y527FSrc over-expressing PAEC. The effects in PAEC were also recapitulated when we transiently over-expressed Y527FSrc in the mouse lung. Finally, we found that the pp60-Src-mediated decrease in DDAH activity was mediated by the phosphorylation of DDAH II at Y207 and that a Y207F mutant DDAH II was resistant to pp60Src-mediated inhibition. We conclude that pp60Src can directly inhibit DDAH II and this is involved in the increased ADMA levels that enhance eNOS uncoupling during the development of ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Amidoidrolases/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Amidoidrolases/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Lipopolissacarídeos/toxicidade , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido Peroxinitroso/biossíntese , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Superóxidos/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 312(4): L452-L476, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979857

RESUMO

Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.


Assuntos
Células Endoteliais/metabolismo , Genômica , Terapia de Alvo Molecular , Transdução de Sinais , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia , Animais , Humanos , Modelos Biológicos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA