Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
MedComm (2020) ; 5(8): e662, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144468

RESUMO

Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.

2.
Am J Transl Res ; 16(7): 3064-3071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114697

RESUMO

OBJECTIVE: To evaluate the clinical efficacy of digital subtraction angiography (DSA) performed via femoral artery and radial artery approaches. METHODS: This retrospective study included 480 patients requiring cerebral vascular angiography at the First People's Hospital of Changde City from March 2020 to February 2022. Patients were divided into the femoral artery group (transfemoral approach, n=400) and the radial artery group (transradial approach, n=80) according to the surgical route. We compared perioperative metrics, success rates of selective angiography and puncture, and complication rates (including pseudoaneurysm, urinary retention, hematoma, vasospasm) between the groups. Multivariate logistic regression was used to analyze factors influencing the failure of angiography by each approach. RESULTS: The radial artery group exhibited shorter durations for puncture, hemostasis, exposure, operation, and postoperative recovery (all P<0.001). The success rate of selective angiography was higher in the radial artery group (93.75%) compared to the femoral artery group (85.25%) (χ2=4.168, P=0.041). No significant difference was found in puncture success rates between the groups (χ2=0.235, P=0.628). The overall complication rate was significantly lower in the radial artery group (2.50%) compared to the femoral artery group (9.25%) (χ2=4.069, P=0.044). Gender and low-density lipoprotein cholesterol levels were significant predictors of angiography failure in both approaches (both P<0.05). CONCLUSION: The transradial approach for DSA is safe and feasible, offering advantages in terms of operational time and complication rates, making it the preferred method in clinical settings.

3.
Biochem Biophys Res Commun ; 735: 150451, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094233

RESUMO

Cerebral small vascular disease (CSVD) has a high incidence worldwide, but its pathological mechanisms remain poorly understood due to the lack of proper animal models. The current animal models of CSVD have several limitations such as high mortality rates and large-sized lesions, and thus it is urgent to develop new animal models of CSVD. Ultrasound can activate protoporphyrin to produce reactive oxygen species in a liquid environment. Here we delivered protoporphyrin into cerebral small vessels of rat brain through polystyrene microspheres with a diameter of 15 µm, and then performed transcranial ultrasound stimulation (TUS) on the model rats. We found that TUS did not affect the large vessels or cause large infarctions in the brain of model rats. The mortality rates were also comparable between the sham and model rats. Strikingly, TUS induced several CSVD-like phenotypes such as cerebral microinfarction, white matter injuries and impaired integrity of endothelial cells in the model rats. Additionally, these effects could be alleviated by antioxidant treatment with N-acetylcysteine (NAC). As control experiments, TUS did not lead to cerebral microinfarction in the rat brain when injected with the polystyrene microspheres not conjugated with protoporphyrin. In sum, we generated a rat model of CSVD that may be useful for the mechanistic study and drug development for CSVD.

4.
bioRxiv ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39131369

RESUMO

Objective: We aim to explore the role of mechanistic target of rapamycin complex (mTORC) 2 in systemic lupus erythematosus (SLE) development, the in vivo regulation of mTORC2 by type I interferon (IFN) signaling in autoimmunity, and to use mTORC2 targeting therapy to ameliorate lupus-like symptoms in an in vivo lupus mouse model and an in vitro coculture model using human PBMCs. Method: We first induced lupus-like disease in T cell specific Rictor, a key component of mTORC2, deficient mice by topical application of imiquimod (IMQ) and monitored disease development. Next, we investigated the changes of mTORC2 signaling and immunological phenotypes in type I IFNAR deficient Lpr mice. We then tested the beneficial effects of anti-Rictor antisense oligonucleotide (Rictor-ASO) in a mouse model of lupus: MRL/lpr mice. Finally, we examined the beneficial effects of RICTOR-ASO on SLE patients' PBMCs using an in vitro T-B cell coculture assay. Results: T cell specific Rictor deficient mice have reduced age-associated B cells, plasma cells and germinal center B cells, and less autoantibody production than WT mice following IMQ treatment. IFNAR1 deficient Lpr mice have reduced mTORC2 activity in CD4+ T cells accompanied by restored CD4+ T cell glucose metabolism, partially recovered T cell trafficking, and reduced systemic inflammation. In vivo Rictor-ASO treatment improves renal function and pathology in MRL/lpr mice, along with improved immunopathology. In human SLE (N = 5) PBMCs derived T-B coculture assay, RICTOR-ASO significantly reduce immunoglobulin and autoantibodies production (P < 0.05). Conclusion: Targeting mTORC2 could be a promising therapeutic for SLE.

5.
Eur J Immunol ; : e2451080, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072720

RESUMO

Although the functions of tyrosine phosphatases in T-cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T-cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T-cell homeostasis and effector functions. Our results demonstrate that T-cell intrinsic PP2A Cα is critically required for CD8+ T-cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα-deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T-cell antibacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T-cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore defective antibacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T-cell homeostasis and effector functions.

6.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38798358

RESUMO

B cell activation is accompanied by dynamic metabolic reprogramming, supported by a multitude of nutrients that include glucose, amino acids and fatty acids. While several studies have indicated that fatty acid mitochondrial oxidation is critical for immune cell functions, contradictory findings have been reported. Carnitine palmitoyltransferase II (CPT2) is a critical enzyme for long-chain fatty acid oxidation in mitochondria. Here, we test the requirement of CPT2 for humoral immunity using a mouse model with a lymphocyte specific deletion of CPT2. Stable 13C isotope tracing reveals highly reduced fatty acid-derived citrate production in CPT2 deficient B cells. Yet, CPT2 deficiency has no significant impact on B cell development, B cell activation, germinal center formation, and antibody production upon either thymus-dependent or -independent antigen challenges. Together, our findings indicate that CPT2 mediated fatty acid oxidation is dispensable for humoral immunity, highlighting the metabolic flexibility of lymphocytes.

7.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585731

RESUMO

During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 axis as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.

8.
Int Immunopharmacol ; 133: 112047, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631221

RESUMO

BACKGROUND: Glioma is a primary tumor originating from the central nervous system, and despite ongoing efforts to improve treatment, its overall survival rate remains low. There are a limited number of reports regarding the clinical grading, prognostic impact, and utility of chemokines. Therefore, conducting a meta-analysis is necessary to obtain convincing and conclusive results. METHODS: A comprehensive literature search was conducted using various databases, including PubMed, Web of Science, The Cochrane Library, Embase, Ovid Medline, CNKI, Wanfang Database, VIP, and CBM. The search encompassed articles published from the inception of the databases until March 2024. The estimated odds ratio (ORs), standard mean difference (SMDs), and hazard ratio (HR) with their corresponding 95% confidence intervals (95% CI) were calculated to assess the predictive value of chemokine and receptor levels in glioma risk. Additionally, heterogeneity tests and bias tests were performed to evaluate the reliability of the findings. RESULTS: This meta-analysis included a total of 36 studies, involving 2,480 patients diagnosed with glioma. The results revealed a significant association between the expression levels of CXCR4 (n = 8; OR = 22.28; 95 % CI = 11.47-43.30; p = 0.000), CXCL12 (n = 4; OR = 10.69; 95 % CI = 7.03-16.24; p = 0.000), CCL2 (n = 6; SMD = -0.83; 95 % CI = -0.98--0.67; p = 0.000), CXCL8 (n = 3; SMD = 0.75; 95 % CI = 0.47-1.04; p = 0.000), CXCR7 (n = 3; OR = 20.66; 95 % CI = 10.20-41.82; p = 0.000), CXCL10 (n = 2; SMD = 3.27; 95 % CI = 2.91-3.62; p = 0.000) and the risk of glioma. Additionally, a significant correlation was observed between CXCR4 (n = 8; OR = 4.39; 95 % CI = 3.04-6.32; p = 0.000), (n = 6; SMD = 1.37; 95 % CI = 1.09-1.65; p = 0.000), CXCL12 (n = 6; OR = 6.30; 95 % CI = 3.87-10.25; p = 0.000), (n = 5; ES = 2.25; 95 % CI = 1.15-3.34; p = 0.041), CCL2 (n = 3; OR = 9.65; 95 % CI = 4.55-20.45; p = 0.000), (n = 4; SMD = -1.47; 95 % CI = -1.68--1.26; p = 0.000), and CCL18 (n = 3; SMD = 1.62; 95 % CI = 1.30-1.93; p = 0.000) expression levels and high-grade glioma (grades 3-4). Furthermore, CXCR4 (HR = 2.38, 95 % CI = 1.66-3.40; p = 0.000) exhibited a strong correlation with poor overall survival (OS) rates in glioma patients. CONCLUSION: The findings of this study showed a robust association between elevated levels of CXCR4, CXCL12, CCL2, CXCL8, CXCL10 and CXCR7 with a higher risk of glioma. Furthermore, the WHO grading system was validated by the strong correlation shown between higher expression of CXCR4, CXCL12, CCL2, and CCL18 and WHO high-grade gliomas (grades 3-4). Furthermore, the results of the meta-analysis suggested that CXCR4 might be a helpful biomarker for predicting the worse prognosis of glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/mortalidade , Glioma/imunologia , Glioma/metabolismo , Prognóstico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/imunologia , Biomarcadores Tumorais/metabolismo , Quimiocinas/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores CXCR4/metabolismo
9.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38463988

RESUMO

During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.

10.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370780

RESUMO

While the functions of tyrosine phosphatases in T cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T cell homeostasis and effector functions. Our results demonstrate that T cell intrinsic PP2A Cα is critically required for CD8+ T cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T cell anti-bacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore the defective anti-bacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T cell homeostasis and effector functions.

11.
Sci Adv ; 9(46): eadi2414, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967193

RESUMO

Patients with advanced cancers who either do not experience initial response to or progress while on immune checkpoint inhibitors (ICIs) receive salvage radiotherapy to reduce tumor burden and tumor-related symptoms. Occasionally, some patients experience substantial global tumor regression with a rebound of cytotoxic CD8+ T cells. We have termed the rebound of cytotoxic CD8+ T cells in response to salvage therapy as T cell resilience and examined the underlying mechanisms of resilience. Resilient T cells are enriched for CX3CR1+ CD8+ T cells with low mitochondrial membrane potential, accumulate less reactive oxygen species (ROS), and express more malic enzyme 1 (ME1). ME1 overexpression enhanced the cytotoxicity and expansion of effector CD8+ T cells partially via the type I interferon pathway. ME1 also increased mitochondrial respiration while maintaining the redox state balance. ME1 increased the cytotoxicity of peripheral lymphocytes from patients with advanced cancers. Thus, preserved resilient T cells in patients rebound after salvage therapy and ME1 enhances their resiliency.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Regulação para Cima , Terapia de Salvação , Neoplasias/tratamento farmacológico
12.
Phytochemistry ; 215: 113851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683990

RESUMO

Twenty-four monoterpenoids, including three previously undescribed compounds (1-3), were isolated from the root bark of Acanthopanax gracilistylus W. W. Smith (Acanthopanacis Cortex). Their structures were unambiguously established based on spectroscopic analysis (HR-ESIMS, IR, 1D, and 2D NMR), and the absolute configurations of 1-3 were elucidated by comparing their experimental and calculated electronic circular dichroism spectra. In addition, the structure of 8 was confirmed by single-crystal X-ray diffraction. The inhibitory activities of 1-24 against neutrophil elastase, 5-lipoxygenase, and cyclooxygenase-2 (COX-2) were studied in vitro for the first time, and the results showed that compound 24 possessed a significant inhibitory effect on COX-2 with an IC50 value of 1.53 ± 0.10 µΜ. This research first reported the presence of monoterpenoids in Acanthopanacis Cortex, including one monoterpenoid 2 with an unusual 4/5 bicyclic lactone system, and compounds 4 and 5 have never been reported in nature.


Assuntos
Eleutherococcus , Elastase de Leucócito , Estrutura Molecular , Elastase de Leucócito/análise , Monoterpenos/química , Eleutherococcus/química , Ciclo-Oxigenase 2/análise , Araquidonato 5-Lipoxigenase/análise , Casca de Planta/química , Espectroscopia de Ressonância Magnética
13.
Bioorg Chem ; 140: 106798, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37634270

RESUMO

Eleven new acyl-quinic acids (AQAs) 1a-9, and 18 known AQAs 10-27 were isolated from the root bark of Acanthopanax gracilistylus W. W. Smith (Acanthopanacis Cortex). The planar structures of 1a-9 were determined based on their HR-ESIMS, IR, and NMR data. The absolute configurations of 1a-6 were identified by comparing the experimental and the calculated electronic circular dichroism (ECD) spectra. This is the first report of the isolation of AQAs from Acanthopanacis Cortex. Notably, 1a-6 were determined as unusual oxyneolignan-(-)-quinic acids heterodimers, representing a new class of natural products. The inhibitory activities of 1a-27 on neutrophil elastase (NE) and cyclooxygenase-2 (COX-2) were studied in vitro, and the results indicated they possessed significant inhibitory activities on COX-2. Among them, the IC50 values of 1a-9 were 0.63±0.014, 0.75±0.028, 0.15±0.023, 0.63±0.016, 0.30±0.013, 35.63±4.600, 8.70±1.241, 16.51±0.480, 0.69±0.049, 0.39±0.017, and 0.26±0.080 µM, respectively. This study represents the inaugural disclosure of the anti-COX-2 constituents found in Acanthopanacis Cortex, thereby furnishing valuable insights into the exploration of novel COX-2 inhibitors derived from natural reservoirs.


Assuntos
Produtos Biológicos , Eleutherococcus , Elastase de Leucócito , Ciclo-Oxigenase 2 , Casca de Planta , Ácido Quínico
14.
Front Immunol ; 14: 1224702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583697

RESUMO

Introduction: The longitudinal responses towards multiple doses of COVID-19 mRNA vaccines in patients with systemic autoimmune diseases remain incompletely understood. While observational studies suggested the safety of COVID-19 mRNA vaccines in rheumatic disease patients, laboratory evidence is lacking. Methods: Here we evaluated seroreactivity, clinical manifestions, and multiple disease biomarkers after 2 or 3 doses of COVID-19 mRNA vaccines in a cohort of patients with rheumatic diseases. Results: Most patients generated high SARS-CoV-2 spike-specific neutralizing antibodies comparable to those in healthy controls after 2 doses of mRNA vaccines. The antibody level declined over time but recovered after the third dose of the vaccine. Patients with systemic lupus erythematosus (SLE) or psoriatic arthritis (PsA) remained without significant flares post-vaccination. The changes in anti-dsDNA antibody concentration and expression of type I interferon (IFN) signature genes were highly variable but did not show consistent or significant increases. Frequency of double negative 2 (DN2) B cells remained largely stable. Discussion: Our data provide experimental evidences indicating the efficacy and safety of repeated COVID-19 mRNA vaccination in rheumatic disease patients.


Assuntos
Artrite Psoriásica , Vacinas contra COVID-19 , COVID-19 , Doenças Reumáticas , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunidade , Vacinas de mRNA , RNA Mensageiro/genética , SARS-CoV-2 , Vacinação/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19/efeitos adversos
15.
Science ; 380(6652): eadd3067, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384709

RESUMO

The precise control of messenger RNA (mRNA) translation is a crucial step in posttranscriptional gene regulation of cellular physiology. However, it remains a challenge to systematically study mRNA translation at the transcriptomic scale with spatial and single-cell resolution. Here, we report the development of ribosome-bound mRNA mapping (RIBOmap), a highly multiplexed three-dimensional in situ profiling method to detect cellular translatome. RIBOmap profiling of 981 genes in HeLa cells revealed cell cycle-dependent translational control and colocalized translation of functional gene modules. We mapped 5413 genes in mouse brain tissues, yielding spatially resolved single-cell translatomic profiles for 119,173 cells and revealing cell type-specific and brain region-specific translational regulation, including translation remodeling during oligodendrocyte maturation. Our method detected widespread patterns of localized translation in neuronal and glial cells in intact brain tissue networks.


Assuntos
Encéfalo , Mapeamento Cromossômico , Neuroglia , Neurônios , Biossíntese de Proteínas , RNA Mensageiro , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Células HeLa , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Mapeamento Cromossômico/métodos , Neurônios/metabolismo , Análise da Expressão Gênica de Célula Única/métodos
16.
Front Immunol ; 14: 1146628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283744

RESUMO

Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.


Assuntos
Citocinas , Transdução de Sinais , Proteína Regulatória Associada a mTOR/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Citocinas/metabolismo
17.
Nat Methods ; 20(5): 695-705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37038000

RESUMO

Spatiotemporal regulation of the cellular transcriptome is crucial for proper protein expression and cellular function. However, the intricate subcellular dynamics of RNA remain obscured due to the limitations of existing transcriptomics methods. Here, we report TEMPOmap-a method that uncovers subcellular RNA profiles across time and space at the single-cell level. TEMPOmap integrates pulse-chase metabolic labeling with highly multiplexed three-dimensional in situ sequencing to simultaneously profile the age and location of individual RNA molecules. Using TEMPOmap, we constructed the subcellular RNA kinetic landscape in various human cells from transcription and translocation to degradation. Clustering analysis of RNA kinetic parameters across single cells revealed 'kinetic gene clusters' whose expression patterns were shaped by multistep kinetic sculpting. Importantly, these kinetic gene clusters are functionally segregated, suggesting that subcellular RNA kinetics are differentially regulated in a cell-state- and cell-type-dependent manner. Spatiotemporally resolved transcriptomics provides a gateway to uncovering new spatiotemporal gene regulation principles.


Assuntos
RNA , Transcriptoma , Humanos , RNA/genética , Cinética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Análise de Célula Única/métodos
18.
Sci Rep ; 13(1): 5360, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005480

RESUMO

Patients with rheumatoid arthritis (RA) can test either positive or negative for circulating anti-citrullinated protein antibodies (ACPA) and are thereby categorized as ACPA-positive (ACPA+) or ACPA-negative (ACPA-), respectively. In this study, we aimed to elucidate a broader range of serological autoantibodies that could further explain immunological differences between patients with ACPA+ RA and ACPA- RA. On serum collected from adult patients with ACPA+ RA (n = 32), ACPA- RA (n = 30), and matched healthy controls (n = 30), we used a highly multiplex autoantibody profiling assay to screen for over 1600 IgG autoantibodies that target full-length, correctly folded, native human proteins. We identified differences in serum autoantibodies between patients with ACPA+ RA and ACPA- RA compared with healthy controls. Specifically, we found 22 and 19 autoantibodies with significantly higher abundances in ACPA+ RA patients and ACPA- RA patients, respectively. Among these two sets of autoantibodies, only one autoantibody (anti-GTF2A2) was common in both comparisons; this provides further evidence of immunological differences between these two RA subgroups despite sharing similar symptoms. On the other hand, we identified 30 and 25 autoantibodies with lower abundances in ACPA+ RA and ACPA- RA, respectively, of which 8 autoantibodies were common in both comparisons; we report for the first time that the depletion of certain autoantibodies may be linked to this autoimmune disease. Functional enrichment analysis of the protein antigens targeted by these autoantibodies showed an over-representation of a range of essential biological processes, including programmed cell death, metabolism, and signal transduction. Lastly, we found that autoantibodies correlate with Clinical Disease Activity Index, but associate differently depending on patients' ACPA status. In all, we present candidate autoantibody biomarker signatures associated with ACPA status and disease activity in RA, providing a promising avenue for patient stratification and diagnostics.


Assuntos
Artrite Reumatoide , Autoanticorpos , Adulto , Humanos , Anticorpos Antiproteína Citrulinada
19.
Elife ; 122023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36861967

RESUMO

In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked ß-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPß-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.


Assuntos
Medula Óssea , Osteogênese , Camundongos , Animais , Glicosilação , Diferenciação Celular , Adipogenia/fisiologia , Células da Medula Óssea , Mamíferos
20.
medRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36993236

RESUMO

Objective: To evaluate seroreactivity and disease biomarkers after 2 or 3 doses of COVID-19 mRNA vaccines in a cohort of patients with rheumatic diseases. Methods: We collected biological samples longitudinally before and after 2-3 doses of COVID-19 mRNA vaccines from a cohort of patients with systemic lupus erythematosus (SLE), psoriatic arthritis, Sjogren's syndrome, ankylosing spondylitis, and inflammatory myositis. Anti-SARS-CoV-2 spike IgG and IgA and anti-dsDNA concentration were measured by ELISA. A surrogate neutralization assay was utilized to measure antibody neutralization ability. Lupus disease activity was measured by Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Expression of type I interferon signature was measured by real-time PCR. The frequency of extrafollicular double negative 2 (DN2) B cells was measured by flow cytometry. Results: Most of the patients generated high SARS-CoV-2 spike-specific neutralizing antibodies comparable to those in healthy controls after 2 doses of mRNA vaccines. The antibody level declined over time but recovered after the third dose of the vaccine. Rituximab treatment substantially reduced antibody level and neutralization ability. Among SLE patients, no consistent increase in SLEDAI scores was observed post-vaccination. The changes in anti-dsDNA antibody concentration and expression of type I IFN signature genes were highly variable but did not show consistent or significant increases. Frequency of DN2 B cells remained largely stable. Conclusion: Rheumatic disease patients without rituximab treatment have robust antibody responses toward COVID-19 mRNA vaccination. Disease activity and disease-associated biomarkers remain largely stable over 3 doses of vaccines, suggesting that COVID-19 mRNA vaccines may not exacerbate rheumatic diseases. KEY MESSAGES: Patients with rheumatic diseases mount robust humoral immunity towards 3 doses of COVID-19 mRNA vaccines.Disease activity and biomarkers remain stable following 3 doses of COVID-19 mRNA vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA