Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(37): 16291-16301, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39226190

RESUMO

Previous studies regarding the associations between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and autism spectrum disorder (ASD) have yielded inconsistent results, with the underlying mechanisms remaining unknown. In this study, we quantified 13 PFAS in cord serum samples from 396 neonates and followed the children at age 4 to assess ASD-related symptoms. Our findings revealed associations between certain PFAS and ASD-related symptoms, with a doubling of perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) concentrations associated with respective increases of 1.79, 1.62, and 1.45 units in language-related symptoms and PFDA exhibiting an association with higher score of sensory stimuli. Nonlinear associations were observed in the associations of 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES) and 8:2 Cl-PFAES with ASD-related symptoms. Employing weighted quantile sum (WQS) regression, we observed significant mixture effects of multiple PFAS on all domains of ASD-related symptoms, with PFNA emerging as the most substantial contributor. Assuming causality, we found that 39-40% of the estimated effect of long-chain PFAS (PFUnDA and PFDoDA) exposure on sensory stimuli was mediated by androstenedione. This study provides novel epidemiological data about prenatal PFAS mixture exposure and ASD-related symptoms.


Assuntos
Transtorno do Espectro Autista , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Transtorno do Espectro Autista/epidemiologia , Gravidez , Pré-Escolar , Masculino , Recém-Nascido , Ácidos Decanoicos
2.
Eur J Pediatr ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39245660

RESUMO

Previous research has assessed the effects of caesarean delivery (CD) on child neurodevelopment; however, whether the effects stem from the surgical procedure itself or its related medical conditions has not been conclusively determined. This study aimed to evaluate the associations among delivery mode, CD-related medical conditions and early childhood neurodevelopment. A total of 3829 maternal-infant pairs from a longitudinal birth cohort in Wuhan City, China, were included in the primary analysis. The neurodevelopment of the children was assessed by the Bayley Scales of Infant Development (BSID), the Conners Comprehensive Behaviour Rating Scale and the Chinese version of the Autism Behavior Checklist. Data on delivery mode and medical conditions were collected via medical records from the study hospital. Among the 3829 children for whom the BSID test was completed at two years of age, 50%, 27%, and 23% were delivered vaginally, by necessary CD, and by elective CD, respectively. Compared with vaginally delivered children, Necessary CD was associated with a 16.67% decrease in Mental Development Index (MDI) scores and a 13.37% decrease in Psychomotor Development Index (PDI) scores, while elective CD showed a 20.63% and 20.99% decrease after FDR correction, respectively. Similarly, among the 2448 children for whom the CBRS was completed, necessary CD was found to be associated with conduct disorders (adjusted ß: 0.06; 95% CI: 0.02, 0.09), hyperactivity (adjusted ß: 0.06; 95% CI: 0.02, 0.11), and hyperactivity index (adjusted ß: 0.07; 95% CI: 0.03, 0.11), while elective CD was significantly associated with hyperactivity problem scores (adjusted ß: 0.08, 95% CI: 0.03, 0.13). However, no significant association was found between CD and symptoms of autism in children, as assessed by the Autism Behavior Checklist (ABC). CONCLUSION: This study suggested that the adverse impact of CD on child neurodevelopment stems from the procedure itself rather than CD-related medical conditions. It is important to minimize the use of CD when there is no medical necessity. WHAT IS KNOWN: • Caesarean delivery (CD) may influence child neurodevelopment and other long-term outcomes. • In China, approximately one-quarter of CD are performed due to maternal request without medical indications. WHAT IS NEW: • The negative impact of CD on the neurodevelopmental outcomes of children may be primarily attributed to the procedure itself, as opposed to related medical conditions. • In the absence of medical indications, unnecessary CD may have adverse impacts on children's neurodevelopment.

3.
Sci Total Environ ; 947: 174537, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977088

RESUMO

Certain heavy metals have been correlated to an elevated risk of inflammation-related diseases and mortality. Nevertheless, the intricate relationships between metal exposure, inflammation and mortality remain unknown. We included 3741 adults with measurements of ten urinary heavy metals in the National Health and Nutritional Examination Survey (NHANES) 2005-2010, followed up to December 31, 2019. Low-grade systemic inflammation was evaluated by various markers, including C-reactive protein (CRP) and ratios derived from regular blood tests. We assessed associations between heavy metal and all-cause mortality using multivariate COX regressions. Then we assessed the mediation effect of low-grade systemic inflammation on the associations via Sobel Test. To gauge the systemic inflammatory potential of the multi-metal mixture and its correlation with all-cause mortality, a Metal Mixture Inflammatory Index (MMII) was developed using reduced rank regression (RRR) models. The association between MMII and all-cause mortality was explored via multivariate COX regressions. Cadmium, antimony and uranium displayed positive associations with mortality, with hazard ratios (HR) ranging from 1.18 to 1.46 (all P-FDR < 0.05). Mediation analyses revealed that the associations between specific heavy metals (cadmium and antimony) and mortality risk were slightly mediated by the low-grade systemic inflammation markers, with mediation proportions ranging from 3.11 % to 5.38 % (all P < 0.05). MMII, the weighted sum of 9 heavy metals, significantly predicted platelet-to-lymphocyte ratio (PLR) and CRP (ß = 0.10 and 1.16, all P < 0.05), was positively associated with mortality risk (HR 1.28, 95 % CI 1.14 to 1.43). Exposure to heavy metals might increase all-cause mortality, partly mediated by low-grade systemic inflammation. MMII, designed to assess the potential systemic inflammatory effects of exposure to multiple heavy metals, was closely related to the all-cause mortality risk. This study introduces MMII as an approach to evaluating co-exposure and its potential health effects comprehensively.


Assuntos
Exposição Ambiental , Inflamação , Metais Pesados , Humanos , Inflamação/induzido quimicamente , Masculino , Feminino , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Pessoa de Meia-Idade , Adulto , Inquéritos Nutricionais , Poluentes Ambientais , Proteína C-Reativa/análise , Biomarcadores , Mortalidade
4.
Toxics ; 11(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37755746

RESUMO

Bisphenol S (BPS) is an environmental pollutant that can accumulate in the human body and cause harm. Puerarin (PUE) is a flavonoid with anti-inflammatory and antioxidant effects. In this study, we used 50 mg/kg/d BPS as a poison and PUE as an intervention for model mice for 42 d. BPS exposure significantly increased the levels of the impairment of the mice's liver function, T-CHO, TG, LDL-C, ALT, and AST in the BPS group were significantly increased (p < 0.05). Additionally, BPS exposure caused inflammatory cell infiltration in the mice liver tissue and enhanced oxidative stress response, the level of MDA was significantly increased (p < 0.05). The expression of CD36 and pparγ was stimulated after BPS exposure. Moreover, the expression of cpt1a and cpt1b, which promote fatty acid oxidation, was downregulated. After PUE intervention, the levels of genes and proteins involved in lipid synthesis (PPARγ, SREBP1C, and FASN) and metabolism (Cpt1a, Cpt1b, and PPARα) in mice returned to those of the control group, or much higher than those in the BPS group. Therefore, we hypothesized that BPS causes lipid accumulation in the liver by promoting lipid synthesis and reducing lipid metabolism, whereas PUE reduces lipid synthesis and promotes lipid metabolism. Conclusively, our results imply that long-term exposure to BPS in mice affects liver lipid metabolism and that PUE intervention could maintain the liver function of mice at normal metabolic levels.

5.
Chemosphere ; 311(Pt 1): 137066, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328321

RESUMO

Bisphenol F (BPF) is a widely used bisphenol A (BPA) substitute plastic additive that has attracted increasing public concerns due to its potential toxic effects on animal and human health. Although previous studies have indicated that BPF might have harmful effects on metabolic homeostasis, the systematic effects of BPF on glucose disorders remain controversial. In this study, mice fed a normal chow diet (ND) and high-fat diet (HFD) were administered BPF at a dose of 100 µg/kg of body weight, and glucose metabolism was monitored after both short- and long-term treatment. Little change in glucose metabolism was observed in BPF-treated ND mice, but improved glucose metabolism was observed in BPF-treated HFD mice. Consistently, BPF treatment led to increased insulin signalling in the skeletal muscle of HFD mice. Additionally, liver metabolite levels also revealed increased carbohydrate digestion and improved TCA cycle progression in BPF-treated HFD mice. Our results demonstrate that sustained BPF exposure at an environmentally relevant dosage may substantially improve glucose metabolism and enhance insulin sensitivity in mice fed a high-fat diet.


Assuntos
Dieta Hiperlipídica , Hipoglicemiantes , Humanos , Camundongos , Animais , Compostos Benzidrílicos/farmacologia , Insulina/metabolismo , Glucose/metabolismo
6.
J Biochem Mol Toxicol ; 37(3): e23273, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541330

RESUMO

Bisphenol S (BPS) is an environmental endocrine disruptor widely used in industrial production. BPS induces oxidative stress and exhibits male reproductive toxicity in mice, but the mechanisms by which BPS impairs steroid hormone synthesis are not fully understood. Nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 signaling is a key pathway in improving cellular antioxidant defense capacities. Therefore, this study explored the effects of exposure to BPS on testosterone synthesis in adult male mice and its mechanisms with regard to the Nrf2/HO-1 signaling pathway. Adult male C57BL/6 mice were orally exposed to BPS (2, 20, and 200 mg/kg BW) with sesame oil as a vehicle (0.1 ml/10 g BW) per day for 28 consecutive days. The results showed that compared with the control group, serum testosterone levels were substantially reduced in the 20 and 200 mg/kg BPS treatment groups, and testicular testosterone levels were reduced in all BPS treatment groups. These changes were accompanied by a prominent decrease in the expression levels of testosterone synthesis-related enzymes (STAR, CYP11A1, CYP17A1, HSD3B1, and HSD17B3) in the mouse testis. In addition, BPS induced oxidative stress in the testis by upregulating the messenger RNA and protein levels of Keap1 and downregulating the levels of Nrf2, HO-1, and downstream antioxidant enzymes (CAT, SOD1, and Gpx4). In summary, our results indicate that exposure of adult male mice to BPS can inhibit Nrf2/HO-1 signaling and antioxidant enzyme activity, which induces oxidative stress and thereby may impair testosterone synthesis in testicular tissues, leading to reproductive damage.


Assuntos
Fator 2 Relacionado a NF-E2 , Testosterona , Masculino , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Camundongos Endogâmicos C57BL , Testículo/metabolismo , Estresse Oxidativo , Transdução de Sinais
7.
Toxics ; 10(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893846

RESUMO

Bisphenol S (BPS), the most common substitute for bisphenol A in manufacturing, is associated with neurotoxicity, but its molecular mechanisms are unclear. Here, we studied the role of the BDNF-TrkB-CREB (brain-derived neurotrophic factor-tropomyosin-related kinase B-CAMP response element-binding protein) signalling pathway in bisphenol S-induced neurotoxicity via methylation regulation in male C57BL/6 mice. The mice were treated with sesame oil or 2, 20 and 200 mg/kg body weight BPS for 28 consecutive days, and the hippocampus was extracted. We recorded the body weight, organ index, and hippocampal pathology and ultrastructure of the mice. The BDNF, TrkB, CREB, phosphorylated (p)-CREB, DNMTs (DNA methyltransferases) levels were determined by qRT-PCR and/or Western blotting. BDNF promoter IV methylation level was detected by bisulfite sequencing PCR. BPS damaged the mouse hippocampus ultrastructure and reduced the number of synapses. Further, it increased the methylation rate of BDNF promoter IV; downregulated BDNF, CREB, p-CREB/CREB and DNMT1 expression; and upregulated DNMT3a and DNMT3b expression. Therefore, we speculate that the BDNF-TrkB-CREB pathway may be involved in BPS-induced neurotoxicity in male mice by regulating methylation.

8.
J Appl Toxicol ; 41(11): 1839-1851, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002388

RESUMO

The reproductive toxicity of bisphenol S (BPS) in male mammals and its possible mechanism are not clear. We investigated the effects and possible mechanism of action of BPS on adult male C57BL/6 mice. We found that exposure to 200-mg/kg BPS resulted in a significant decrease in the sperm count in the caput/corpus and cauda epididymis, significantly decreased sperm motility, and significantly increased the sperm deformity. Histological evaluation revealed that BPS exposure caused a decrease of spermatozoa in the lumen of seminiferous tubules and a reduction in the proportion of Stage VII or VIII seminiferous tubules in the BPS-treated groups. Furthermore, ultrastructure analysis revealed BPS-induced mitochondrial damage and apoptosis in spermatogenic cells. Moreover, BPS exposure-induced oxidative stress in testicular tissues. Further, dUTP-biotin nick end labeling (TUNEL) assay showed that BPS induced the apoptosis of spermatogenic cells in a dose-dependent manner. BPS also significantly upregulated cleaved caspase-8, cleaved caspase-9, cleaved caspase-3, Fas, and FasL and significantly downregulated the Bcl-2/Bax ratio. These results suggest that BPS-induced oxidative stress in the testis and spermatogenic cell apoptosis potentially impairs spermatogenesis and sperm function, which may be the mechanism of the reproductive toxicity of BPS. The Fas/FasL and mitochondrial signal pathways may be involved in BPS-induced oxidative stress-related apoptosis. These results suggest that BPS-induced oxidative stress in the testis and spermatogenic cell apoptosis potentially impairs spermatogenesis and sperm function, which may be the mechanism of the reproductive toxicity of BPS. The Fas/FasL and mitochondrial signal pathways may be involved in BPS-induced oxidative stress-related apoptosis.


Assuntos
Apoptose , Disruptores Endócrinos/toxicidade , Estresse Oxidativo , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Biomed Res Int ; 2021: 6625952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880372

RESUMO

The liver is the primary target organ for perfluorooctane sulphonate (PFOS), a recently discovered persistent organic pollutant. However, the mechanisms mediating hepatotoxicity remain unclear. Herein, we explored the relationship between reactive oxygen species (ROS) and autophagy and apoptosis induced by PFOS in L-02 cells, which are incubated with different concentrations of PFOS (0, 50, 100, 150, 200, or 250 µmol/L) for 24 or 48 hrs at 37°C. The results indicated that PFOS exposure decreased cell activities, enhanced ROS levels in a concentration-dependent manner, decreased mitochondrial membrane potential (MMP), and induced autophagy and apoptosis. Compared with the control, 200 µmol/L PFOS increased ROS levels; enhanced the expression of Bax, cleaved-caspase-3, and LC3-II; induced autophagy; decreased MMP; and lowered Bcl-2, p62, and Bcl-2/Bax ratio. The antioxidant N-acetyl cysteine (NAC) protected MMP against PFOS-induced changes and diminished apoptosis and autophagy. Compared with 200 µmol/L PFOS treatment, NAC pretreatment reversed the increase in ROS, Bax, and cleaved-caspase-3 protein caused by PFOS, lowered the apoptosis rate increased by PFOS, and increased the levels of MMP and Bcl-2/Bax ratio decreased by PFOS. The autophagy inhibitor 3-methyladenine and chloroquine decreased apoptosis and cleaved-caspase-3 protein level and increased the Bcl-2/Bax ratio. In summary, our results suggest that ROS-triggered autophagy is involved in PFOS-induced apoptosis in L-02 cells.


Assuntos
Ácidos Alcanossulfônicos/farmacologia , Apoptose , Autofagia , Embrião de Mamíferos/patologia , Fluorocarbonos/farmacologia , Fígado/embriologia , Fígado/patologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cadaverina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
10.
J Biochem Mol Toxicol ; 35(6): 1-11, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33749030

RESUMO

Bisphenol S (BPS) is associated with neurotoxicity, but its molecular mechanisms are unclear. Our aim was to investigate the role of the brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB)/cAMP-response element-binding protein (CREB) signaling pathway in BPS-induced cytotoxicity in SK-N-SH cells. The cells were treated with various concentrations of BPS, and cell viability, apoptosis rate, mitochondrial membrane potential (MMP), and the BDNF, cleaved-caspase-3, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), TrkB, CREB, and phospho-CREB (p-CREB) levels were determined. The effects of pretreatment with the TrkB activator 7,8-dihydroxyflavone (7,8-DHF) were also explored. BPS decreased SK-N-SH cell viability and altered their morphology. Their apoptosis rate was increased, as were the levels of the proapoptotic proteins Bax and cleaved-caspase-3, but MMP was decreased. Thus, BPS may induce mitochondria-dependent apoptosis pathways. BPS also reduced the BDNF, TrkB, and p-CREB levels, and pretreatment with 7,8-DHF alleviated its cytotoxic effects. Thus, BPS-induced cytotoxicity might be mediated by the BDNF/TrkB/CREB signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citotoxinas/farmacologia , Glicoproteínas de Membrana/metabolismo , Fenóis/farmacologia , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos
11.
Biomed Res Int ; 2020: 8894331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381598

RESUMO

Ulcerative colitis (UC) is the most common inflammatory bowel disease, and its incidence has increased in recent years. Recent clinical and experimental data indicate that gut microbiota plays a pivotal role in the pathogenesis of UC. Chlamydia establishes a stable and persistent colonization in the gastrointestinal tract without apparent pathogenicity to gastrointestinal or extragastrointestinal tissues. However, the detailed effects of Chlamydia on the gastrointestinal tissue remain unknown. The primary aim of this study is to investigate the effects of Chlamydia muridarum (C. muridarum) on development of colitis induced by dextran sodium sulfate (DSS) and the underlying molecular mechanism. The results suggested that C. muridarum significantly improved colitis symptoms-including weight loss, disease activity index, colon length, and histopathological changes in the colon caused by DSS-and alleviated the reduced expression of interleukin-22 and occludin in the colonic tissue due to DSS administration. Furthermore, the absence of IL-22 completely prevented C. muridarum from alleviating colitis and significantly decreased the levels of occludin, an important downstream effector protein of IL-22. These findings suggest that C. muridarum ameliorates ulcerative colitis induced by DSS via the IL-22/occludin signal pathway.


Assuntos
Chlamydia muridarum , Colite/metabolismo , Interleucinas/metabolismo , Ocludina/metabolismo , Transdução de Sinais/fisiologia , Animais , Peso Corporal/fisiologia , Colite/induzido quimicamente , Colo/fisiologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina 22
12.
J Appl Toxicol ; 40(11): 1480-1490, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020912

RESUMO

As an organophosphorus ester, tri-ortho-cresyl phosphate (TOCP) has been widely used in agriculture and industry. It is reported that TOCP can induce organophosphate-induced delayed neuropathy (OPIDN) in sensitive animal and human species. However, the exact molecular mechanisms underlying TOCP-induced neurotoxicity are still unknown. In this study, we found that TOCP could induce autophagy by activating protein kinase C alpha (PKCα) signaling in neuroblastoma SK-N-SH cells. PKCα activators could positively regulate TOCP-induced autophagy by increasing the expression levels of neighbor BRCA1 gene protein 1 (NBR1), LC3 and P62 autophagic receptor protein. Furthermore, PKCα activation impaired the ubiquitin-proteasome system (UPS), resulting in inhibition of proteasome activity and accumulation of ubiquitinated proteins. UPS dysfunction could stimulate autophagy to serve as a compensatory pathway, which contributed to the accumulation of the abnormally hyperphosphorylated tau proteins and degradation of impaired proteins of the MAP 2 and NF-H families in neurodegenerative disorders.


Assuntos
Autofagia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Tritolil Fosfatos/toxicidade , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/enzimologia , Neurônios/ultraestrutura , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas tau/metabolismo
13.
Chemosphere ; 251: 126385, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32145576

RESUMO

Fipronil (FP) is an emerging insecticide, however, its occurrence in drinking water and source water is limited. In this work, a total of 789 tap water and 95 ground water samples were collected from China in June 2019 in order to assess occurrence of FP and its derivatives (FPs). FPs were also analyzed in source, treated (n = 10, July), and tap water samples (n = 81, July and October 2019) originating from the central Yangtze River and its tributary, the Hanshui River in Wuhan. The sum concentrations of FPs (ΣFPs) in the tap water in China ranged from not detected (ND) to 5.07 (median: 0.03 ng/L), with FP found in 55.3% of the samples, and other targets ≤ 50.0%. Significant regional variations in the ΣFPs values were found between East China (75th percentile: 0.31 ng/L) and Northwest China (0.04), as well as between East China and North China (0.04). Similar ΣFPs values were found for ground water and tap water. The estimated daily intake of ΣFPs via water ingestion was below 200 pg/kg-bw/day for all age groups and was lower than the reference dose for FP (0.2 µg/kg-bw/day). Additionally, FPs were found in all of the source water samples collected in Wuhan with concentrations in the range of 0.84-2.72 ng/L for ΣFPs (median: 2.39). Most of these FPs were removed during water treatment. Higher concentration of ΣFPs in tap water was observed in July (median: 0.04 ng/L) compared to that in October (ND). This is the first study on the occurrence of FPs in the Yangtze River, the fate of FPs during the tap water treatment, and the regional distribution of FPs in tap water from China.


Assuntos
Pirazóis/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , China , Água Potável/análise , Água Potável/química , Monitoramento Ambiental , Água Subterrânea , Inseticidas , Rios
14.
Int J Mol Sci ; 18(4)2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28441774

RESUMO

Perfluorooctane sulfonate (PFOS), a new kind of persistent organic pollutant, is widely distributed in the environment and exists in various organisms, where it is also a neurotoxic compound. However, the potential mechanism of its neurotoxicity is still unclear. To examine the role of epigenetics in the neurotoxicity induced by PFOS, SK-N-SH cells were treated with different concentrations of PFOS or control medium (0.1% DMSO) for 48 h. The mRNA levels of DNA methyltransferases (DNMTs) and Brain-derived neurotrophic factor (BDNF), microRNA-16, microRNA-22, and microRNA-30a-5p were detected by Quantitative PCR (QPCR). Enzyme Linked Immunosorbent Assay (ELISA) was used to measure the protein levels of BDNF, and a western blot was applied to analyze the protein levels of DNMTs. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the BDNF promoter I and IV. Results of MTT assays indicated that treatment with PFOS could lead to a significant decrease of cell viability, and the treated cells became shrunk. In addition, PFOS exposure decreased the expression of BDNF at mRNA and protein levels, increased the expression of microRNA-16, microRNA-22, microRNA-30a-5p, and decreased the expression of DNMT1 at mRNA and protein levels, but increased the expression of DNMT3b at mRNA and protein levels. Our results also demonstrate that PFOS exposure changes the methylation status of BDNF promoter I and IV. The findings of the present study suggest that methylation regulation of BDNF gene promoter and increases of BDNF-related-microRNA might underlie the mechanisms of PFOS-induced neurotoxicity.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Fluorocarbonos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , DNA-Citosina Metilases/genética , DNA-Citosina Metilases/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
Biomed Res Int ; 2015: 302653, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26649298

RESUMO

Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is neurotoxic to mammalian species. However, the underlying mechanism of its neurotoxicity was unclear. We hypothesized that PFOS suppresses BDNF expression to produce its neurotoxic effects by inhibiting the ERK-CREB pathway. SH-SY5Y human neuroblastoma cells were exposed to various concentrations of PFOS to examine the role of the BDNF-ERK-CREB signalling pathway in PFOS-induced apoptosis and cytotoxicity. Furthermore, to ascertain the mechanism by which PFOS reduces BDNF signalling, we examined the expression levels of miR-16 and miR-22, which potentially regulate BDNF mRNA translation at the posttranscriptional level. Results indicated that PFOS significantly decreased cell viability and induced apoptosis in SH-SY5Y cells. In addition, BDNF and pERK protein levels decreased after PFOS treatment; however, pCREB protein levels were significantly elevated in PFOS treated groups. TrkB protein expression increased in the 10 µM and 50 µM PFOS groups and significantly decreased in the 100 µM PFOS group. Our results demonstrated that PFOS exposure decreased miR-16 expression and increased miR-22 expression, which may represent a possible mechanism by which PFOS decreases BDNF protein levels. PFOS may inhibit BDNF-ERK-CREB signalling by increasing miR-22 levels, which may, in part, explain the mechanism of PFOS neurotoxicity.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Fluorocarbonos/toxicidade , MicroRNAs/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Ácidos Alcanossulfônicos/metabolismo , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Fluorocarbonos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética
16.
Biomed Res Int ; 2015: 652416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685800

RESUMO

Chlamydophila psittaci (C. psittaci) is a human zoonotic pathogen, which could result in severe respiratory disease. In the present study, we investigated the role and mechanism of the type III secretion system (T3SS) of C. psittaci in regulating the inflammatory response in host cells. C. psittaci-infected THP-1 cells were incubated with the specific T3SS inhibitor INP0007, inhibitors of ERK, p38, or JNK, and the levels of inflammatory cytokines were analyzed using Q-PCR and ELISA. The levels of ERK, p38, and JNK phosphorylation were analyzed by Western blot. Our results verified that INP0007 inhibited chlamydial growth in vitro, but the coaddition of exogenous iron completely reversed the growth deficit. INP0007 inhibited the growth of C. psittaci and decreased the levels of IL-8, IL-6, TNF-α, and IL-1ß. Exogenous iron restored the chlamydial growth but not the production of inflammatory cytokines. These results demonstrated that the expression of inflammatory cytokines during infection was associated with the T3SS which reduced by incubation with ERK and JNK inhibitors, but not with p38 inhibitor. We concluded that the T3SS elicited inflammatory responses by activating the JNK or ERK signaling pathways in the infection of C. psittaci.


Assuntos
Sistemas de Secreção Bacterianos , Chlamydophila psittaci/metabolismo , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Psitacose/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Chlamydophila psittaci/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Psitacose/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
17.
Environ Toxicol ; 30(9): 1082-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24616003

RESUMO

Perfluorooctanyl sulfonate (PFOS), a cardiac toxicity compound, has been widely detected in the environment and in organisms. However, the toxic mechanism is not clear. Our previous study indicated that prenatal PFOS exposure led to swollen mitochondrial with vacuolar structure and loss of cristae in offsping's heart. The purpose of this study was to investigate the effect of PFOS on the apoptosis in developing heart and mitochondria-mediated apoptosis pathway. Pregnant Sprague-Dawley (SD) rats were exposed to PFOS at doses of 0.1, 0.6, and 2.0 mg/kg-d and 0.05% Tween 80 as control by gavage from gestation day 2 (GD 2) to GD 21. Apoptosis, as well as expression of apoptosis related genes associated with mitochondrial-mediated apoptosis pathway, including p53, bcl-2, bax, cytochrome c, caspase-9, and caspase-3 were analyzed in heart tissues from weaned (postnatal day 21, PND 21) offspring. The results showed that prenatal PFOS exposure resulted in apoptosis in the offspring's heart. The mRNA and protein expression levels of p53, bax, cytochrome c, caspase-9, and caspase-3 in the offspring's heart were enhanced in various PFOS-treated groups, meanwhile, the bcl-2 expression levels were decreased. Our results indicated that prenatal PFOS exposure induced the apoptosis of weaned offspring rat heart tissue via mitochondria-mediated apoptotic pathway.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Apoptose/efeitos dos fármacos , Fluorocarbonos/toxicidade , Coração/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Feminino , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Desmame , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
J Pharm Pharmacol ; 64(2): 293-301, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22221106

RESUMO

OBJECTIVES: The aim of the study was to elucidate the possible role and mechanism of NO-1886 (ibrolipim, a lipoprotein lipase activator) in ameliorating insulin resistance induced by high palmitate. METHODS: HepG2 cells were cultured in RPMI 1640 medium and were treated with palmitate to induce insulin resistance. Free fatty acids (FFAs), glucose, glycogen, cell viability and mRNA and protein levels were analysed separately. KEY FINDINGS: We found that HepG2 cells treated with 0.5 mm palmitate for 48 h led to a significant decrease of insulin-induced glucose consumption (from 2.89 ± 0.85 mm in the control to 0.57 ± 0.44 mm in palmitate). Insulin resistance (IR) of HepG2 cells was induced by 0.5 mm palmitate for 48 h. NO-1886 stimulated glucose consumption, glycogen synthesis and FFA absorption in insulin-resistant HepG2 cells. Maximum stimulation effects were observed with 10 µm NO-1886 for 24 h. Compared with the dimethyl sulfoxide-treated group, 2.5 µm NO-1886 or higher could induce the mRNA expression of lipoprotein lipase. Meanwhile, NO-1886 increased the protein content of P-GSK-3ßser(9) and decreased the protein level of GSK-3ß in insulin-resistant HepG2 cells, but NO-1886 didn't change the protein levels of PI3-Kp85 and Akt2. CONCLUSION: Lipoprotein lipase activator NO-1886 could increase glycogen synthesis in HepG2 cells and could ameliorate the insulin resistance, which was associated with GSK-3 signalling.


Assuntos
Benzamidas/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogenólise/efeitos dos fármacos , Resistência à Insulina/fisiologia , Ativadores de Lipase de Lipoproteínas/farmacologia , Compostos Organofosforados/farmacologia , Palmitatos/metabolismo , Benzamidas/química , Células Cultivadas , Glicogênio Sintase Quinase 3 beta , Células Hep G2 , Humanos , Ativadores de Lipase de Lipoproteínas/química , Compostos Organofosforados/química , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Estatística como Assunto
19.
Pharmazie ; 66(10): 798-803, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22026163

RESUMO

OBJECTIVE: Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. RESULTS: High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. CONCLUSION: Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.


Assuntos
Benzamidas/farmacologia , Células Endoteliais/efeitos dos fármacos , Glucose/farmacologia , Hipolipemiantes/farmacologia , Proteína Oncogênica v-akt/metabolismo , Compostos Organofosforados/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Corantes , Células Endoteliais/metabolismo , Endotelina-1/biossíntese , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Indicadores e Reagentes , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sais de Tetrazólio , Tiazóis , Veias Umbilicais/citologia , Fator de von Willebrand/biossíntese , Fator de von Willebrand/genética
20.
Toxicology ; 282(1-2): 23-9, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21251948

RESUMO

Xenobiotics exposure in early life may have adverse effects on animals' development through mitochondrial injury or dysfunction. The current study demonstrated the possibility of cardiac mitochondrial injury in prenatal PFOS-exposed weaned rat heart. Pregnant Sprague-Dawley (SD) rats were exposed to perfluorooctane sulfonate (PFOS) at doses of 0.1, 0.6 and 2.0 mg/kg/d and 0.05% Tween 80 as control by gavage from gestation days 2-21. The dams were allowed to give nature delivery and then heart tissues from weaned (postnatal day 21) offspring rats were analyzed for mitochondrial injury through ultrastructure observation by electron microscope, global gene expression profile by microarray, as well as related mRNA and proteins expression levels by quantitative PCR and western blot. Ultrastructural analysis revealed significant vacuolization and inner membrane injury occurred at the mitochondria of heart tissues from 2.0 mg/kg/d dosage group. Meanwhile, the global gene expression profile showed significant difference in level of some mRNA expression associated with mitochondrial function at 2.0 mg/kg/d dosage group, compared to the control. Furthermore, dose-response trends for the expression of selected genes were analyzed by quantitative PCR and western blot analysis. The selected genes were mainly focused on those encoding for proteins involved in energy production, control of ion levels, and maintenance of heart function. The down-regulation of mitochondrial ATP synthetase (ATP5E, ATP5I and ATP5O) implicated a decrease in energy supply. This was accompanied by down-regulation of gene transcripts involved in energy consumption such as ion transporting ATPase (ATP1A3 and ATP2B2) and inner membrane protein synthesis (SLC25A3, SLC25A4, SLC25A10, SLC25A29). The up-regulation of gene transcripts encoding for uncoupling proteins (UCP1 and UCP3), epidermal growth factor receptor (EGFR) and connective tissue growth factor (CTGF), was probably a protective process to maintain heart function. The results indicate PFOS prenatal exposure can induce cardiac mitochondrial injury and gene transcript change, which may be a significant mechanism of the developmental toxicity of PFOS to rat.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Cardiotoxinas/toxicidade , Fluorocarbonos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Ácidos Alcanossulfônicos/administração & dosagem , Animais , Cardiotoxinas/administração & dosagem , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/toxicidade , Feminino , Fluorocarbonos/administração & dosagem , Perfilação da Expressão Gênica , Coração/crescimento & desenvolvimento , Masculino , Mitocôndrias Cardíacas/ultraestrutura , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miocárdio/ultraestrutura , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tensoativos/administração & dosagem , Tensoativos/toxicidade , Vacúolos/efeitos dos fármacos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA