Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499200

RESUMO

The application of ammonia-oxidizing archaea (AOA)-based partial nitrification-anammox (PN-A) for mainstream wastewater treatment has attracted research interest because AOA can maintain higher activity in low-temperature environments and they have higher affinity for oxygen and ammonia-nitrogen compared with ammonia-oxidizing bacteria (AOB), thus facilitating stabilized nitrite production, deep removal of low-ammonia, and nitrite-oxidizing bacteria suppression. Moreover, the low affinity of AOA for ammonia makes them more tolerant to N-shock loading and more efficiently integrated with anaerobic ammonium oxidation (anammox). Based on the limitations of the AOB-based PN-A process, this review comprehensively summarizes the potential and significance of AOA for nitrite supply, then gives strategies and influencing factors for replacing AOB with AOA. Additionally, the methods and key influences on the coupling of AOA and anammox are explored. Finally, this review proposes four AOA-based oxygen- or ammonia-limited autotrophic nitritation/denitrification processes to address the low effluent quality and instability of mainstream PN-A processes.


Assuntos
Archaea , Nitrificação , Archaea/genética , Amônia , Nitritos , Oxidação Anaeróbia da Amônia , Águas Residuárias , Oxirredução , Nitrogênio/análise , Oxigênio
2.
Adv Sci (Weinh) ; 11(19): e2307409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477567

RESUMO

Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.


Assuntos
Celulose , Modelos Animais de Doenças , Hemorragia , Animais , Coelhos , Ratos , Celulose/química , Citrus/química , Hemostáticos/farmacologia , Masculino , Hemostasia/efeitos dos fármacos , Ratos Sprague-Dawley , Géis , Ferimentos e Lesões/complicações
3.
Bioresour Technol ; 395: 130336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237642

RESUMO

In this study, the filamentous bulking (FB) with moderate and excessive levels were demonstrated to induce anammox failure by inhibiting nitrogen (N) removal and biomass retention. The low external mass transfer resulted from high liquid-surface friction and low turbulence of filamentous surface was considered the "trigger" of anammox failure, which decreased flux of nitrogen flow toward granular surface and directly limited N-removal loading, which meanwhile exposed granules with N-scarcity environment and indirectly inhibited N-removal bio-activity. Low bio-activity performed poor extracellular polymeric substances secretion further destroyed bio-aggregation with low suface hydrophobicity, which acted as "accelerator" for granule disintegration and biomass washout, ultimatly leading to anammox failure. Fortunately, incresing hydraulic shear stress could eradicate FB's negative effects without inhibiting FB itself, which promoted re-granulation and N-remval restore by enhancing external mass transfer more than hydraulic detachment. Enhancing mechanical stirring with FB level was necessary to maintain stable operation of granular anammox system.


Assuntos
Oxidação Anaeróbia da Amônia , Esgotos , Reatores Biológicos , Nitrogênio , Biomassa , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA