Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 911
Filtrar
1.
Eur J Oncol Nurs ; 70: 102598, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38795440

RESUMO

PURPOSE: This study was designed to evaluate the effect of acupuncture on cough, expectoration, and shortness of breath in lung cancer patients. METHODS: Between December 2021 and June 2022, a total of 130 lung cancer patients were recruited, and they were split into control and intervention groups at random. Routine nursing was provided to the control group, whereas routine nursing with acupuncture using LU7 (Lie Que), LU9 (Tai Yuan), BL13 (Fei Shu), and BL20 (Pi Shu) was administered to the intervention group for 7 days. The severity of cough, expectoration, and shortness of breath was assessed 1 day before and after the interventions using the lung cancer-specific module of the MDASI. A two-way ANOVA was performed for group comparisons. RESULTS: Compared with the control group, the symptoms of cough in the intervention group were significantly improved (F = 5.095, MD = -0.32, 95% CI, -0.59 to 0.04, P = 0.025), while expectoration (F = 0.626, MD = -0.11, 95% CI, -0.38 to 0.16, P = 0.430) and shortness of breath (F = 0.165, MD = -0.05, 95% CI, -0.27 to 0.18, P = 0.685) had no significant change. Cough also identified an obvious interaction effect (P = 0.014), and the post-intervention simple main effect test demonstrated a tangible difference between the two groups (MD = -0.66, 95% CI, -0.99 to 0.33, P < 0.001) post-intervention. CONCLUSIONS: Acupuncture using LU7, LU9, BL13, and BL20 can relieve the cough of lung cancer patients, but not relieve expectoration and shortness of breath.

2.
J Org Chem ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773955

RESUMO

Regioselective methods to access alkylated tetrazoles still remain a challenging goal. Herein, we describe a novel regioselective protocol for N2-arylation of tetrazoles with diazo compounds using inexpensive Al(OTf)3. This reaction could be conducted under mild conditions to access a diverse array of alkylated tetrazoles with 2-substituted tetrazoles as the major products, demonstrating a comprehensive range of substrate compatibility and excellent functional group compatibility. Mechanistic studies revealed a carbene-free process in this reaction procedure. Furthermore, the scale-up reaction and transformations of the N2-arylation of tetrazole products demonstrated the potential of this strategy.

3.
J Bacteriol ; : e0027323, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717111

RESUMO

Type VI secretion system (T6SS) is a potent weapon employed by various Pseudomonas species to compete with neighboring microorganisms for limited nutrients and ecological niches. However, the involvement of T6SS effectors in interbacterial competition within the phytopathogen Pseudomonas syringae remains unknown. In this study, we examined two T6SS clusters in a wild-type P. syringae MB03 and verified the involvement of one cluster, namely, T6SS-1, in interbacterial competition. Additionally, our results showed that two T6SS DNase effectors, specifically Tde1 and Tde4, effectively outcompeted antagonistic bacteria, with Tde4 playing a prominent role. Furthermore, we found several cognate immunity proteins, including Tde1ia, Tde1ib, and Tde4i, which are located in the downstream loci of their corresponding effector protein genes and worked synergistically to protect MB03 cells from self-intoxication. Moreover, expression of either Tde1 or C-terminus of Tde4 in Escherichia coli cells induced DNA degradation and changes in cell morphology. Thus, our results provide new insights into the role of the T6SS effectors of P. syringae in the interbacterial competition in the natural environment. IMPORTANCE: The phytopathogen Pseudomonas syringae employs an active type VI secretion system (T6SS) to outcompete other microorganisms in the natural environment, particularly during the epiphytic growth in the phyllosphere. By examining two T6SS clusters in P. syringae MB03, T6SS-1 is found to be effective in killing Escherichia coli cells. We highlight the excellent antibacterial effect of two T6SS DNase effectors, namely, Tde1 and Tde4. Both of them function as nuclease effectors, leading to DNA degradation and cell filamentation in prey cells, ultimately resulting in cell death. Our findings deepen our understanding of the T6SS effector repertoires used in P. syringae and will facilitate the development of effective antibacterial strategies.

4.
Chem Sci ; 15(17): 6454-6464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699272

RESUMO

Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.

5.
FASEB J ; 38(9): e23624, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747001

RESUMO

The Retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) gene encodes an important protein that performs various physiological functions. Variants of RPGRIP1L are related to a number of diseases. However, it is currently unknown whether RPGRIP1L is correlated with breast invasive carcinoma (BRCA). In BRCA tissue specimens, the expression of RPGRIP1L was found to be elevated in comparison to its levels in normal breast tissue. A notable decline in survival rates was associated with patients exhibiting heightened RPGRIP1L gene expression. Consistent with these findings, our data also show the above results. Furthermore, elevated expression of RPGRIP1L corresponded with a spectrum of unfavorable clinicopathological features, including the presence of human epidermal growth factor receptor 2 (HER2) positive, estrogen receptor (ER) positive, over 60 years old, T2, N0, and N3. At the same time, our research indicated that 50 genes and 15 proteins were positively related to RPGRIP1L, and that these proteins and genes were mostly involved in T cell proliferation, immune response, cytokine activity, and metabolic regulation. In addition, in the present study, there was a significant correlation between RPGRIP1L expression and immune cell infiltration. Finally, we found that four Chemicals could downregulate the expression of RPGRIP1L. Altogether, our results strongly indicated that RPGRIP1L might serve as a new prognostic biomarker for BRCA.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Idoso , Adulto
6.
Acta Pharmacol Sin ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760541

RESUMO

Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence. Histone deacetylase (HDAC), a class of histone deacetylases mainly expressed in the nucleus, has emerged as a critical contributor to renal tissues senescence. In this study we investigated the interplay between MDM2 and HDAC1 in renal senescence. We established a natural aging model in mice over a 2-year period that was verified by SA-ß-GAL staining and increased expression of senescence-associated markers such as p21, p16, and TNF-α in the kidneys. Furthermore, we showed that the expression of MDM2 was markedly increased, while HDAC1 expression underwent downregulation during renal senescence. This phenomenon was confirmed in H2O2-stimulated HK2 cells in vitro. Knockout of renal tubular MDM2 alleviated renal senescence in aged mice and in H2O2-stimulated HK2 cells. Moreover, we demonstrated that MDM2 promoted renal senescence by orchestrating the ubiquitination and subsequent degradation of HDAC1. These mechanisms synergistically accelerate the aging process in renal tissues, highlighting the intricate interplay between MDM2 and HDAC1, underpinning the age-related organ function decline.

7.
J Environ Manage ; 360: 121020, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763116

RESUMO

Reducing soil erosion (SE) is crucial for achieving harmony between human society and the ecological environment. The cultivated land fragmentation (CLF), directly or indirectly, alters soil structure, diminishes its water-holding capacity, and escalates the risk of SE. Scientific assessment of the effect of CLF on SE can provide new insights into controlling of SE across watersheds in China. However, few studies have quantified the effect of CLF on SE. Therefore, we utilized land use change data in the Yangtze River basin from 2000 to 2020, measuring the levels of CLF and SE using Fragstats and InVEST models. The bivariate spatial autocorrelation model was employed to reveal the spatial relationship between CLF and SE. Additionally, we constructed a spatial Durbin model and introduced the geographically and temporally weighted regression model to analyze the role of CLF on SE. The south bank of the upper and middle reaches of the Yangtze River basin exhibited high CLF and SE. The bivariate spatial autocorrelation results showed a significant positive spatial correlation between CLF and SE. The spatial Durbin model results showed that CLF had a spatial spillover effect and time lag on SE, and the effect of CLF on SE had an inverted "N" curve. The study also confirmed that last SE and neighboring SE areas influenced local SE. Currently, CLF had a negative effect on SE in the Sichuan Basin, Yunnan-Guizhou Plateau, and the middle and lower Yangtze River Plain, and positively in Qinghai, Hunan, and Jiangxi provinces. These findings suggest that the government should enhance cross-regional and cross-sectoral cooperation and monitoring of cultivated land changes to prevent and control SE effectively.

8.
Environ Manage ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767663

RESUMO

Small water supply systems (SWSSs) are often more vulnerable to waterborne disease outbreaks. In Japan, many SWSSs operate without regulation under the Waterworks Law, yet there is limited investigation into microbial contamination and the associated health risks. In this study, the microbiological water quality of four SWSSs that utilize mountain streams as water sources and do not install water treatment facilities were monitored for over 2 years. In investigated SWSSs, the mean heterotrophic plate counts were below 350 CFU/mL, and the total bacterial loads (16S rDNA concentration) ranged from 4.71 to 5.35 log10 copies/mL. The results also showed the consistent presence of fecal indicator bacteria (FIB), i.e., Escherichia coli and Clostridium perfringens, suggesting the potential of fecal pollution. E. coli was then utilized as an indicator to assess the health risk posed by E. coli O157:H7 and Campylobacter jejuni. The results indicated that the estimated mean annual risk of infection and disability-adjusted life years (DALYs) exceeded acceptable levels in all SWSSs for the two reference pathogens. To ensure microbial water safety, implementing appropriate water treatment facilities with an estimated mean required reduction of 5-6 log10 was necessary. This study highlighted the potential microbial contamination and health risk level in SWSSs that utilize mountain streams as water sources, even though the water sources were almost not affected by human activities. Furthermore, this study would also be helpful in supporting risk-based water management to ensure a safe water supply in SWSSs.

9.
Cancer Biol Ther ; 25(1): 2349429, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738555

RESUMO

Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both in vitro and in vivo by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. In vivo xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.


Assuntos
Ferroptose , Metiltransferases , Estabilidade de RNA , Sorafenibe , Neoplasias do Colo do Útero , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Camundongos , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Estabilidade de RNA/efeitos dos fármacos , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Prognóstico , Ferritinas , Oxirredutases
10.
J Am Chem Soc ; 146(20): 13703-13708, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38634757

RESUMO

Tuning the active site structure of metal-nitrogen-carbon electrocatalysts has recently attracted increasing interest. Herein, we report a bottom-up synthesis strategy in which atomically regulated N-doped polycyclic aromatic hydrocarbons (N-PAHs) of NxC42-x (x = 1, 2, 3, 4) were used as ligands to allow tuning of the active site's structures of M-Nx and establish correlations between the structures and electrocatalytic properties. Based on the synthesis process, detailed characterization, and DFT calculation results, active structures of Nx-Fe1-Nx in Fe1-Nx/RGO catalysts were constructed. The results demonstrated that the extra uncoordinated N atoms around the Fe1-N4 moieties disrupted the π-conjugated NxC42-x ligands, which led to more localized electronic state in the Fe1-N4 moieties and superior catalytic performance. Especially, the Fe1-N4/RGO exhibited optimized performance for ORR with E1/2 increasing by 80 mV and Jk at 0.85 V improved 18 times (compared with Fe1-N1/RGO). This synthesis strategy utilizing N-PAHs holds significant promise for enhancing the controllability of metal-nitrogen-carbon electrocatalyst preparation.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38630191

RESUMO

Diagnosing and treating chronic orofacial pain is challenging due to its complex structure and limited understanding of its causes and mechanisms. In this study, we used RNA sequencing to identify differentially expressed genes (DEGs) in the rostral ventral medulla (RVM) and thalamus of rats with persistent orofacial pain, aiming to explore its development. DEGs were functionally analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results showed a significant association between immune response and pain in this model. Key DEG mRNA expression trends were further validated using real-time quantitative polymerase chain reaction (RT-PCR), confirming their crucial roles in chronic orofacial pain. After injecting complete Freund's adjuvant (CFA) into the bilateral temporomandibular joint cavity for 14 days, we observed 293 upregulated genes and 14 downregulated genes in the RVM, and 1086 upregulated genes and 37 downregulated genes in the thalamus. Furthermore, we identified 27 common DEGs with altered expression (upregulation) in both the thalamus and RVM, including Cd74, C3, Cxcl13, C1qb, Itgal, Fcgr2b, C5ar1, and Tlr2, which are pain-associated genes. Protein-protein interaction (PPI) analysis using Cytoscape revealed the involvement of Toll-like receptors, complement system, differentiation clusters, and antigen presentation-related proteins in the interaction between the thalamus and RVM. The results of this study show that the immune system seems to have a more significant influence on chronic orofacial pain. There may be direct or indirect influence between the thalamus and RVM, which may participate in the regulation of chronic orofacial pain.

12.
Se Pu ; 42(4): 352-359, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566424

RESUMO

Oxidative stress, which is characterized by an imbalance between antioxidants and free radicals, plays a pivotal role in the pathogenesis of coronary heart disease, a common and serious cardiovascular condition, and contributes significantly to its development and progression. Serum free thiols are crucial components of the body's antioxidant defense system. The accurate determination of serum free thiol levels provides a reference basis for understanding the body's status and monitoring the risk factors associated with the occurrence and progression of coronary heart disease. In this study, a high performance liquid chromatographic (HPLC) method based on the derivatization reaction of 2,2'-dithiodipyridine was developed to simultaneously obtain the concentrations of total free thiols (Total-SH), low-molecular-mass free thiols (LMM-SH), and protein-free thiols (P-SH) in human serum. An Agilent Eclipse XDB-C18 column (150 mm×4.6 mm, 5 µm) was used for the analysis, and gradient elution was performed at a flow rate of 1 mL/min. A 0.1% formic acid aqueous solution was used as mobile phase A, and a 0.1% formic acid acetonitrile solution was used as mobile phase B. The gradient elution program was as follows: 0-0.1 min, 12%B-30%B; 0.1-2 min, 30%B; 2-2.1 min, 30%B-100%B; 2.1-6 min, 100%B; 6-6.1 min, 100%B-12%B; 6.1-7 min, 12%B. Well-separated peaks appeared after a run time of 5 min. The peak of 2-thiopyridone represented the Total-SH content of the samples, and the peak of the pyridyldithio derivative represented the LMM-SH content. The difference between these two peaks indicated the P-SH content. The derivatization reaction conditions were optimized, and the method was validated. The method demonstrated good linearity, with a correlation coefficient ≥0.9994, over the concentration range of 31.25-1000 µmol/L. The limits of detection for Total-SH and LMM-SH were 2.61 and 0.50 µmol/L, and the limits of quantification for Total-SH and LMM-SH were 8.71 and 1.67 µmol/L, respectively. The recoveries of Total-SH and LMM-SH were in the range of 91.1%-106.0%. The intra- and inter-day precisions ranged from 0.4% to 9.1%. The developed method was used to analyze serum samples from 714 volunteers. The Total-SH concentrations ranged from 376.60 to 781.12 µmol/L, with an average concentration of 555.62 µmol/L. The LMM-SH concentrations varied from 36.37 to 231.65 µmol/L,with an average of 82.34 µmol/L. The P-SH concentrations ranged from 288.36 to 687.74 µmol/L, with an average of 473.27 µmol/L. Spearman's correlation test showed that serum thiol levels were correlated with the severity of coronary artery disease and common clinical biochemical indicators. The proposed study provides a simple and reliable HPLC method for detecting serum free thiols and exploring their relationship with coronary heart disease, offering a new reference for the study of markers related to the risk of coronary heart disease.


Assuntos
2,2'-Dipiridil/análogos & derivados , Doença das Coronárias , Dissulfetos , Formiatos , Compostos de Sulfidrila , Humanos , Cromatografia Líquida de Alta Pressão , Antioxidantes
13.
Angew Chem Int Ed Engl ; : e202404952, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588012

RESUMO

The vast bulk of polystyrene (PS), a major type of plastic polymers, ends up in landfills, which takes up to thousands of years to decompose in nature. Chemical recycling promises to enable lower-energy pathways and minimal environmental impacts compared with traditional incineration and mechanical recycling. Herein, we demonstrated that methanol as a hydrogen supplier assisted the depolymerization of PS (denoted as PS-MAD) into alkylbenzenes over a heterogeneous catalyst composed of Ru nanoparticles on SiO2. PS-MAD achieved a high yield of liquid products which accounted for 93.2 wt % of virgin PS at 280 °C for 6 h with the production rate of 118.1 mmolcarbon gcatal. -1 h-1. The major components were valuable alkylbenzenes (monocyclic aromatics and diphenyl alkanes), the sum of which occupied 84.3 wt % of liquid products. According to mechanistic studies, methanol decomposition dominates the hydrogen supply during PS-MAD, thereby restraining PS aromatization which generates by-products of fused polycyclic arenes and polyphenylenes.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38661542

RESUMO

In the field of sustainable chemistry, it is still a significant challenge to realize efficient light-powered space-confined catalysis and propulsion due to the limited solar absorption efficiency and the low mass and heat transfer efficiency. Here, novel semiconductor TiO2 nanorockets with asymmetric, hollow, mesoporous, and double-layer structures are successfully constructed through a facile interfacial superassembly strategy. The high concentration of defects and unique topological features improve light scattering and reduce the distance for charge migration and directed charge separation, resulting in enhanced light harvesting in the confined nanospace and resulting in enhanced catalysis and self-propulsion. The movement velocity of double-layered nanorockets can reach up to 10.5 µm s-1 under visible light, which is approximately 57 and 119% higher than that of asymmetric single-layered TiO2 and isotropic hollow TiO2 nanospheres, respectively. In addition, the double-layered nanorockets improve the degradation rate of the common pollutant methylene blue under sustainable visible light with a 247% rise of first-order rate constant compared to isotropic hollow TiO2 nanospheres. Furthermore, FEA simulations reveal and confirm the double-layered confined-space enhanced catalysis and self-propulsion mechanism.

15.
Nat Commun ; 15(1): 3646, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684683

RESUMO

The electrochemical synthesis of propylene oxide is far from practical application due to the limited performance (including activity, stability, and selectivity). In this work, we spatially decouple the bromide-mediated process to avoid direct contact between the anode and propylene, where bromine is generated at the anode and then transferred into an independent reactor to react with propylene. This strategy effectively prevents the side reactions and eliminates the interference to stability caused by massive alkene input and vigorously stirred electrolytes. As expected, the selectivity for propylene oxide reaches above 99.9% with a remarkable Faradaic efficiency of 91% and stability of 750-h (>30 days). When the electrode area is scaled up to 25 cm2, 262 g of pure propylene oxide is obtained after 50-h continuous electrolysis at 6.25 A. These findings demonstrate that the electrochemical bromohydrin route represents a viable alternative for the manufacture of epoxides.

16.
Nat Commun ; 15(1): 3619, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684692

RESUMO

The nitrate (NO3-) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for the intermediates. Though the extensively reported Cu-based electrocatalysts benefit NO3- adsorption, one of the key issues lies in the accumulation of nitrite (NO2-) due to its weak adsorption, resulting in the rapid deactivation of catalysts and sluggish kinetics of subsequent hydrogenation steps. Here we report a tandem electrocatalyst by combining Cu single atoms catalysts with adjacent Co3O4 nanosheets to boost the electroreduction of NO3- to NH3. The obtained tandem catalyst exhibits a yield rate for NH3 of 114.0 mg NH 3 h-1 cm-2, which exceeds the previous values for the reported Cu-based catalysts. Mechanism investigations unveil that the combination of Co3O4 regulates the adsorption configuration of NO2- and strengthens the binding with NO2-, thus accelerating the electroreduction of NO3- to NH3.

17.
ACS Nano ; 18(19): 12453-12467, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38686995

RESUMO

Traditional magnetic resonance imaging (MRI) contrast agents (CAs) are a type of "always on" system that accelerates proton relaxation regardless of their enrichment region. This "always on" feature leads to a decrease in signal differences between lesions and normal tissues, hampering their applications in accurate and early diagnosis. Herein, we report a strategy to fabricate glutathione (GSH)-responsive one-dimensional (1-D) manganese oxide nanoparticles (MONPs) with improved T2 relaxivities and achieve effective T2/T1 switchable MRI imaging of tumors. Compared to traditional contrast agents with high saturation magnetization to enhance T2 relaxivities, 1-D MONPs with weak Ms effectively increase the inhomogeneity of the local magnetic field and exhibit obvious T2 contrast. The inhomogeneity of the local magnetic field of 1-D MONPs is highly dependent on their number of primary particles and surface roughness according to Landau-Lifshitz-Gilbert simulations and thus eventually determines their T2 relaxivities. Furthermore, the GSH responsiveness ensures 1-D MONPs with sensitive switching from the T2 to T1 mode in vitro and subcutaneous tumors to clearly delineate the boundary of glioma and metastasis margins, achieving precise histopathological-level MRI. This study provides a strategy to improve T2 relaxivity of magnetic nanoparticles and construct switchable MRI CAs, offering high tumor-to-normal tissue contrast signal for early and accurate diagnosis.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Compostos de Manganês , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Animais , Camundongos , Meios de Contraste/química , Humanos , Campos Magnéticos , Glutationa/química , Óxidos/química , Linhagem Celular Tumoral , Glioma/diagnóstico por imagem , Glioma/patologia , Tamanho da Partícula , Nanopartículas de Magnetita/química
18.
Front Med (Lausanne) ; 11: 1372984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572160

RESUMO

[This corrects the article DOI: 10.3389/fmed.2023.1285142.].

19.
Int J Gen Med ; 17: 1233-1251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562210

RESUMO

Background: Breast cancer (BC) continues to pose a substantial challenge to global health, necessitating an enhanced understanding of its fundamental mechanisms. Among its various pathological classifications, breast invasive carcinoma (BRCA) is the most prevalent. The role of the transcription factor forkhead box P3 (FOXP3), associated with regulatory T cells, in BRCA's diagnosis and prognosis remains insufficiently explored, despite its recognized importance. Methods: We examined the mRNA expression profile of FOXP3 in BRCA patients, assessing its correlation with disease detection, patient survival, immune checkpoint alterations, and response to anticancer drugs. Results: Our analysis revealed significantly elevated FOXP3 mRNA levels in BRCA patients, with a 95.7% accuracy for BRCA detection based on the area under the curve. High FOXP3 mRNA levels were positively correlated with overall survival and showed significant associations with CTLA4, CD274, PDCD1, TMB, and immune cell infiltration status. Furthermore, FOXP3 mRNA expression was linked to the efficacy of anticancer drugs and the tumor inflammation signature. Discussion: These findings suggest that FOXP3 serves as a promising biomarker for BRCA, offering valuable insights into its diagnosis and prognosis. The correlation between FOXP3 expression and immune checkpoint alterations, along with its predictive value for treatment response, underscores its potential in guiding therapeutic strategies. Conclusion: FOXP3 stands out as an influential factor in BRCA, highlighting its diagnostic accuracy and prognostic value. Its association with immune responses and treatment efficacy opens new avenues for research and clinical applications, positioning FOXP3 as a vital target for further investigation in BRCA management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA