Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907180

RESUMO

Inspired by the natural plant cuticles, a novel strategy was proposed for the fabrication of biomimetic plant cuticles from pullulan-graphene oxide (PU-GO) and beeswax-stearic acid (BW-SA), which could serve as hydrophilic polysaccharides and hydrophobic waxes, respectively. PU-GO and PU-GO/BW-SA in different GO concentrations (0, 10, 30 and 50 µg/mL) were prepared, and their structural characteristics and basic properties were investigated. Results showed that PU-GO/BW-SA possessed a hydrophilic layer and a hydrophobic structure similar to the structure of natural plant cuticles. The incorporation of GO enhanced the barrier properties of the films and PU-GO/BW-SA showed a higher contact angle, lower tensile strength and higher barrier properties compared with PU-GO. In addition, PU-GO/BW-SA in 10 µg/mL GO concentration (PU-GO10/BW-SA) possessed the lowest WVP (7.2 × 10-7 g/(m h Pa)) and a contact angle (93.78°) similar to natural plant cuticles. Applications in Citrus Limon Rosso further proved the potential of PU-GO10/BW-SA as a biomimetic plant cuticle in fruit preservation.


Assuntos
Citrus , Biomimética , Ceras/química
2.
Crit Rev Food Sci Nutr ; 62(14): 3705-3722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35348019

RESUMO

The membrane can not only be used as food packaging, but also for the separation, fractionation and recovery of food ingredients. Graphene oxide (GO) sheets are a two-dimensional (2 D) material with a unique structure that exhibit excellent mechanical properties, biocompatibility, and flexibility. The corporation of polymer matrix membrane with GO can significantly improve the permeability, selectivity, and antibacterial activity. In this review, the chemical structures of GO, GO membranes and GO/polymer composite membranes are introduced, the permeation mechanisms of molecules through the membranes are discussed and key factors affecting the permeability are presented in detail. In addition, recent applications in the food industry for filtration, bioreactions and active food packaging are analyzed, and limitations and future trends of GO membranes development are also highlighted. GO/polymer composite membranes exhibit excellent permeability, selectivity and strong barrier properties against bacterial and gas permeation. However, current food material filtration and packaging applications of GO/polymer composite membranes are still in the laboratory stage. Future work can focus on the development of large scale uniformly sized GO production, the homogeneous distribution and tight combination of GO in polymer matrixes, the sensing function of GO in packaging, and the verification method of GO toxicology.


Assuntos
Grafite , Polímeros , Embalagem de Alimentos , Grafite/química , Membranas Artificiais
3.
Food Microbiol ; 76: 443-449, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166172

RESUMO

Modified atmosphere packaging (MAP) is considered an effective method for extending the shelf life of meat. The use of optimal mixture of gases (CO2 and N2) in food packaging containers has been proved to effectively inhibit the growth of microorganisms in poultry meat. In general, a minimum CO2 concentration range of 20%-30% is required for the inhibitory effect. The aim of this study was to investigate the mechanism by which MAP (CO2/N2 30%/70%) inhibits Pseudomonas fragi, a dominant spoilage microorganism in aerobically stored chilled meat. The cell physiological changes were determined by measuring membrane integrity, membrane potential, ATP level, and extracellular proteolytic activity. The results showed that samples stored under MA retained cell membrane integrity, but lost significant membrane potential and ATP synthesis activity. Furthermore, the peptides issued from 2 structural proteins (myosin and actin) were mainly identified in air samples, indicating that these fragments result from bacterial proteolytic activity while MAP inhibited this activity. Overall, the study found that cell metabolism and extracellular protease activity decreased under MAP conditions. This study showed that MAP is an effective food preservation strategy and revealed mechanisms by which MAP inhibits spoilage.


Assuntos
Embalagem de Alimentos/métodos , Carne/microbiologia , Pseudomonas fragi/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Animais , Dióxido de Carbono/farmacologia , Embalagem de Alimentos/instrumentação , Conservação de Alimentos , Gases/farmacologia , Carne/análise , Nitrogênio/farmacologia , Aves Domésticas , Proteólise , Pseudomonas fragi/efeitos dos fármacos , Pseudomonas fragi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA