Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Heliyon ; 10(11): e31878, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882332

RESUMO

The molecular pathology of lung injury in patients with Corona Virus Disease 2019 (COVID-19) remain unclear. In this study, we performed a proteomic study of lung tissues from seven patients with COVID-19, and eight without. Lung parenchymal tissues with COVID-19 were obtained from autopsy samples, while control samples were obtained from paracancerous tissues. Proteins were extracted using phenol extraction. A tandem mass tag-based quantitative proteomic approach combined with bioinformatic analysis was used to detect proteomic changes in the SARS-CoV-2-infected lung tissues. A total of 6,602, and 6,549 proteins were identified in replicates 1 and 2, respectively. Of these, 307, and 278, respectively, were identified as differentially expressed proteins (DEPs). In total, 216 DEPs were identified in this study. These proteins were enriched in 189 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The downregulated proteins are mainly involved in focal adhesion (n = 5), and the PI3K-Akt signaling pathway (n = 4). The upregulated proteins were related to neutrophil extracellular trap (NET) formation (n = 16), and the phagosome pathway (n = 11). The upregulated proteins in these two pathways interact with one another. Further immunohistochemistry verified NET enrichment in the tissues with COVID-19 compared to the controls. Our results systematically outlined the proteomic profiles of the lung's response to SARS-CoV-2 infection and indicated that NET formation was hyper-activated. These results will hopefully provide new evidence for understanding the mechanism behind fatal COVID-19.

2.
J Cancer ; 15(12): 3724-3737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911385

RESUMO

Background: Colorectal cancer (CRC) ranks third in terms of cancer incidence and fourth in terms of cancer-related deaths worldwide. Identifying potential biomarkers of CRC is crucial for treatment and drug development. Methods: In this study, we established a C57B/6N mouse model of colon carcinogenesis using azoxymethane-dextran sodium sulfate (AOM-DSS) treatment for 14 weeks to identify proteins associated with colon cancer. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis was conducted on the cell membrane components enriched in the colonic mucosa. Additionally, tumor tissues and adjacent normal colon tissues were collected from patients with colon cancer for comparative protein and metabolite analyses. Results: In total, 74 differentially expressed proteins were identified in the tumor tissue samples from AOM/DSS-treated mice compared to both the adjacent tissue samples from AOM/DSS-treated mice and tissue samples from saline-treated control mice. Bioinformatics analysis revealed eight downregulated proteins enriched in the branched-chain amino acids pathway (valine, leucine, and isoleucine degradation). Moreover, these proteins are already known to be associated with the survival rate of patients with cancer. Targeted metabolomics showed increased levels of valine, leucine, and isoleucine in tumor tissues compared to those in adjacent normal tissues in patients with colon cancer. Furthermore, a real-time PCR experiment demonstrated that Aldehyde dehydrogenase, mitochondrial (short protein name ALDH2, gene name Aldh2) and Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial (short protein name HCDH, gene name Hadh) (two genes) in the pathway of branched-chain amino acids) were downregulated in patients with colon cancer (colon tumor tissues vs. their adjacent colon tissues). ALDH2 expression was further validated by western blotting in AOM/DSS-treated mouse model and in clinical samples. Conclusion: This study highlighted the inactivation of the branched-chain amino acid degradation pathway in colon cancer and identified ALDH2 and HCDH as potential biomarkers for diagnosing colon cancer and developing new therapeutic strategies.

3.
Int J Antimicrob Agents ; 64(2): 107215, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795930

RESUMO

OBJECTIVE: To investigate the characteristics of drug resistance mutations (DRMs) and their contextual influence on drug susceptibility in CRF07_BC and CRF_08BC subtypes. METHODS: Patients with virological failure were genotyped using phylogenetic analysis. DRMs and susceptibility to antiretroviral drugs were analysed using the Stanford University HIV Drug Resistance Database. RESULTS: Six HIV subtypes were identified among 1296 successfully amplified sequences, with the CRF07_BC subtype prevailing at a rate of 91.7%, followed by CRF08_BC. Overall, the CRF07_BC and CRF08_BC subtypes were similar in the distribution and frequency of DRMs, the most common DRMs were K103N and M184V. However, among patients with antiretroviral therapy duration of ≥3 y who developed resistance, CRF08_BC exhibited a higher mutation frequency at sites 184, 138, 221, and 188 (Chi-square test, P < 0.05), and compared with CRF07_BC, patients with CRF08_BC had higher prevalence of abacavir, emtricitabine, lamivudine, doravirine, etravirine, and rilpivirine resistance. Moreover, there was an increased prevalence of cross-resistance between efavirenz/nevirapine and new-generation NNRTIs in patients with CRF08_BC; doravirine (r = 1.0), rilpivirine (r = 0.93), and etravirine (r = 0.86) resistance highly correlated with efavirenz/nevirapine. CONCLUSIONS: The present study provides valuable insights into the profile of DRMs and resistance patterns in patients with CRF07_BC and CRF08_BC experiencing treatment failure in Butuo. These findings have the potential to contribute to future strategies for HIV control and treatment.

4.
Food Chem ; 453: 139612, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38772306

RESUMO

Fusarium oxysporum and Botrytis cinerea are the main pathogens that cause fruit decay and reduce the postharvest shelf life of cherry tomatoes. Boosting the potency of natural products requires implementing structural modification to combat postharvest pathogens. Herein, we developed a novel Vanillin-Deep Eutectic Agent (V-DEA) from natural compounds and evaluated its effectiveness against tomato fruit rot pathogens. The results demonstrated that V-DEA suppressed mycelium growth and spore germination of F. oxysporum and B. cinerea by enhancing cell membrane permeability, increasing lipid peroxidation, and inhibiting enzyme activities. Importantly, using 8-mM V-DEA successfully prevented postharvest decay in cherry tomatoes, while 4-mM significantly extended their shelf life by reducing weight loss and shriveling, and enhancing key fruit qualities such as total soluble solids, ascorbic acid, tartaric acid, and lycopene. In conclusion, V-DEA exhibits dual properties as a potent pathogen inhibitor and antioxidant activity, thus prolonging the shelf life of cherry tomatoes.


Assuntos
Benzaldeídos , Botrytis , Conservação de Alimentos , Frutas , Fusarium , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Benzaldeídos/farmacologia , Benzaldeídos/química , Botrytis/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Conservação de Alimentos/métodos , Frutas/química , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Armazenamento de Alimentos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38342488

RESUMO

BACKGROUND: The pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of nirmatrelvir (NMV) are unknown in Chinese patients with COVID-19. OBJECTIVES: To understand the PK, as well as PK-PD characteristics of NMV for optimizing the dose in Chinese patients with COVID-19. METHODS: We enrolled 141 participants who received NMV 300 mg/ritonavir (RTV) 100 mg b.i.d. for 5 days. The NMV concentrations were analyzed using 251 blood samples. PK/PD of NMV was investigated in these COVID-19 patients using a nonlinear mixed-effects model. RESULTS: The patients had a mean age of 82 years (range, 34-97). The absorption rate constant and apparent clearance of NMV in this Chinese cohort were 0.253 h-1 and 6.83 L/h, respectively, similar to Caucasian patients. No covariates affected NMV clearance. Predicted peak (Cmax ) and trough concentration (Cmin ) under 300 mg NMV/100 mg RTV b.i.d. were 4004 and 1498 ng/mL, respectively. Although higher AUC and Cmin were weakly associated with a slight increase in the number of cycle threshold (CT) of viral genes, no significant correlation was found, indicating a weak relationship between drug exposure and efficacy (CT). CONCLUSIONS: In all, our findings suggest no ethnic PK differences, a weak and clinically insignificant relationship between drug exposure and efficacy, suitable dosage for Chinese patients (including the elderly) based on PK parameters, and the need for further studies to determine optimal regimens for high-risk patients due to inter-individual variability.

6.
Cardiology ; 149(3): 286-296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228115

RESUMO

INTRODUCTION: This study aimed to explore the function of miR-135a in the progress of atrial fibrosis and the mechanism of miR-135a/SIRT1 (sirtuin 1) in human cardiac fibroblasts and mouse cardiac fibroblasts (MCFs) mediating the regulation of atrial fibrosis by mitochondrial oxidative respiration function. METHODS: Using Ang II (angiotensin II) to induce fibrosis in HCFs (human corneal fibroblasts) and MCF (Michigan Cancer Foundation, MCF) cells in vitro, the miRNA-seq results of previous studies were validated. Proliferative and invasive ability of HCFs and MCFs was detected by Cell Counting Kit-8 assay (CCK-8) and scratch experiment after overexpressing miR-135a in HCFs and MCF cells. Protein and mRNA expression was tested using Western blot and qPCR. The target of miR-135a was verified as SIRT1 by a luciferase reporter assay and the activities of the mitochondrial respiratory enzyme complexes I, II, III, and IV were determined colorimetrically. The activities of malondialdehyde, reactive oxygen species, and superoxide dismutase in cells were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: miR-135a expression was elevated in HCFs and MCFs cells in the Ang II group than control group. Overexpression of miR-135a could promote the proliferation, migration, oxidative stress, as well as fibrosis of cardiac fibroblasts and suppresses mitochondrial activity. In addition, we found SIRT1 was a target gene of miR-135a. What is more, the findings showed miR-135a promoted fibrosis in HCFs and MCFs cells acting through regulation of SIRT1. CONCLUSIONS: miR-135a mediates mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.


Assuntos
Fibroblastos , Fibrose , Átrios do Coração , MicroRNAs , Sirtuína 1 , MicroRNAs/metabolismo , MicroRNAs/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Humanos , Camundongos , Animais , Fibroblastos/metabolismo , Átrios do Coração/patologia , Átrios do Coração/metabolismo , Proliferação de Células/genética , Angiotensina II , Estresse Oxidativo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas
7.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38056458

RESUMO

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Assuntos
Acetaminofen , Falência Hepática Aguda , Humanos , Camundongos , Animais , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Magnésio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo
9.
Antioxidants (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978866

RESUMO

Litchi's post-harvest pericarp browning is one of the main constraints that drastically affect its visual attributes and market potential. Therefore, the vanillin-taurine Schiff base (VTSB) compound prepared from natural compounds of vanillin and taurine exhibited higher DPPH-radical-scavenging invitro antioxidant activity than vanillin. VTSB first-time report to mitigate the postharvest browning of litchi fruit. In this study, litchi fruits were dipped in 0.3 mM (based on pre-experiment) VTSB solution and stored at 25 ± 1 °C for six days to examine their effects on browning and postharvest quality. Fruit treated with VTSB had lower levels of browning degree (BD), browning index (BI), weight loss, soluble quinone (SQ), relative electrolyte leakage (REL), and malondialdehyde (MDA) than control fruit. Additionally, total anthocyanins and phenolic concentrations, Total soluble solids (TSS), and 2,2-diphenyl-1-picrylhydrazyl-free radical scavenging activity (DPPH-RSA) were preserved higher in VTSB-treated litchi fruit. The levels of Ascorbate peroxidase (APX), Superoxide dismutase (SOD), and Catalase (CAT) were higher in treated fruit, whereas polyphenol oxidase (PPO) and Peroxidase (POD) were decreased during the postharvest period. This study suggested that VTSB would be very useful for different post-harvest problems in the fruit and vegetable industry.

10.
Foods ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765957

RESUMO

This study proposed to investigate the generation mechanism of raisins-derived volatile compounds during unsaturated fatty acids oxidation (UFAO) using a mixture of fatty acids (FAs) and four individual FA at different time intervals (0, 4, 8, 12, 16, and 20 days; 60 °C). During the sun-drying of 'Thompson Seedless' grapes (Vitis vinifera L.), a total of 39 UFAO-derived volatiles were characterized by the GC-MS. Firstly a pH value of 4.2 was optimized to proceed with a raisin drying-like UFAO model reaction. Afterward, GC-MS quantification revealed 45 UFAO-derived volatiles, and the maximum numbers of compounds were identified in the interaction of all FAs (39) following linoleic acid (29), erucic acid (27), oleic acid (25), and linolenic acid (27). Pentanoic acid, (E,E)-2,4-octadienal, and n-decanoic acid were only quantified in all FAs, linoleic acid, and erucic acid, respectively. This study showed that all FAs reactions were found to be responsible for the generation of a greater number of UFAO-derived volatiles with higher concentrations.

11.
J Glob Antimicrob Resist ; 32: 98-103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708768

RESUMO

OBJECTIVES: To assess the virological outcomes, prevalence of HIV drug resistance mutation (DRM), and correlates in Butuo County. METHODS: We conducted a cross-sectional study. Virological failure (VF) was defined as HIV-1 RNA ≥1000 copies/mL and on antiretroviral therapy (ART) for ≥6 months. Genotypic drug resistance was performed among VF cases. Correlates of DRM were identified using multivariate logistic regression. RESULTS: The overall virological suppression rate was 85.3%; DRM was detected in 42.6% (517/1215) VF cases and 6.2% of the sample patients. A total of 90.9% of patients were infected with HIV-1 CRF07_BC subtype. The prevalence of DRM to nucleoside reverse transcriptase inhibitor (NRTI) and non-nucleoside reverse transcriptase inhibitor (NNRTI) were 46.0% and 96.9%, respectively. The most prevalent mutation for NRTI was M184V (84.5%). Lamivudine (3TC), emtricitabine (FTC), and abacavir (ABC) had the highest resistance rates. For NNRTI, K103N (60.7%), nevirapine (NVP), and efavirenz (EFV) had the highest resistance rates and cross resistance to rilpivirine (RPV), doravirine (DOR), and etravirine (ETR). Ritonavir boosted lopinavir (LPV/r) resistance rate was extremely low. The occurrence of DRM was associated with age at ART ≤18 years, baseline CD4 count ≤200 cells/mL, NVP-based regimen, and ART duration >3 years. CONCLUSION: A relatively high proportion of VF and broad DRM for NRTI and NNRTI were observed, causing high-level resistance to first-line NRTI, NNRTI, and next generation NNRTI. Our findings necessitate the implementation of scaling up virological monitoring, adherence support, and timely switching to an LPV/r-containing regimen when patients with VF to reduce the occurrence of DRM.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Estudos Transversais , Infecções por HIV/tratamento farmacológico , Nevirapina/uso terapêutico , Lamivudina , Emtricitabina , Lopinavir/uso terapêutico , Mutação
12.
Proteomics ; 23(2): e2200362, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254857

RESUMO

Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/metabolismo , Proteômica , Infecções por Enterovirus/metabolismo , Proteínas/metabolismo , Metabolômica , Redes e Vias Metabólicas
13.
Clin Drug Investig ; 42(11): 1009-1016, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36239914

RESUMO

BACKGROUND AND OBJECTIVES: Data on the effect of food on the pharmacokinetics of senaparib (previously IMP4297), an oral poly (adenosine diphosphate-ribose) polymerase inhibitor, are limited. This study was conducted to evaluate the effect of food on the pharmacokinetics of senaparib in healthy Chinese subjects. METHODS: This is a phase I, open-label, randomized, single-dose, two-way crossover study. Healthy Chinese male subjects were randomized 1:1 to receive a single dose of senaparib 100 mg in two prandial states: fasted or after a high-fat meal; subjects were given a second dose after switching prandial states and a washout period of at least 7 days. Pharmacokinetics were assessed at pre-dose and up to 72 h post-dose. Safety was assessed throughout the study. RESULTS: Sixteen subjects were randomized and included in the pharmacokinetic analysis; 15 completed the study. The presence of food slowed the rate of senaparib absorption (time to maximum concentration) by ~ 3 h and reduced the maximum concentration of senaparib by ~ 24%. Total exposure to senaparib was higher in the fed than fasted state; senaparib area under the plasma concentration-time curve from time zero to the last measurable concentration and area under the plasma concentration-time curve from time zero to infinity were increased by ~ 24 and ~28%, respectively. Safety profiles were similar in both prandial states. All treatment-emergent adverse events were grade 1 in severity; no serious adverse events or deaths were reported. CONCLUSIONS: Food slightly decreased the rate and increased the extent of senaparib absorption following oral administration. However, the effect of food on various exposure parameters was not considered clinically meaningful. Safety data were consistent with the known profile of senaparib and senaparib was well tolerated in the fed and fasted states in healthy subjects. These results indicated that senaparib could be administered orally with or without food. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT04057729.


Assuntos
Interações Alimento-Droga , Humanos , Masculino , Estudos Cross-Over , Voluntários Saudáveis , Área Sob a Curva , Administração Oral , Disponibilidade Biológica , China
14.
Front Cell Infect Microbiol ; 12: 941325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909978

RESUMO

Enterovirus A (EV-A) species cause hand, foot and mouth disease (HFMD), threatening the health of young children. Understanding the mutual codon usage pattern of the virus and its host(s) has fundamental and applied values. Here, through examining multiple codon usage parameters, we found that the codon usage bias among EV-A strains varies and is clade-specific. EVA76, EVA89, EVA90, EVA91 and EVA92, the unconventional clade of EV-A strains, show unique codon usage pattern relative to the two conventional clades, including EVA71, CVA16, CVA6 and CVA10, etc. Analyses of Effective Number of Codon (ENC), Correspondence Analysis (COA) and Parity Rule 2 (PR2), etc., revealed that the codon usage patterns of EV-A strains are shaped by mutation pressure and natural selection. Based on the neutrality analysis, we determined the dominant role of natural selection in the formation of the codon usage bias of EV-A. In addition, we have determined the codon usage compatibility of potential hosts for EV-A strains using codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses, and found that EV-A showed host-specific codon adaptation patterns in different clades. Finally, we confirmed that the unique codon usage pattern of the unconventional clade affected protein expression level in human cell lines. In conclusion, we identified novel characteristics of codon usage bias in distinct EV-A clades associated with their host range, transmission and pathogenicity.


Assuntos
Infecções por Enterovirus , Enterovirus , Antígenos Virais , Criança , Pré-Escolar , Códon , Uso do Códon , Infecções por Enterovirus/genética , Evolução Molecular , Humanos , Filogenia , Seleção Genética
15.
Front Oncol ; 12: 836087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860571

RESUMO

Background: Chronic inflammation contributes to approximately 20% of cancers; the underlying mechanisms are still elusive. Here, using an animal model of colitis to colon-cancerous transformation, we demonstrated that endoplasmic reticulum (ER) stress couples with metabolic reprogramming to promote a malignant transformation of chronic inflammation. Methods: The animal model for chronic colitis to colon-cancerous transformation was established in C57BL/6N mice by azoxymethane (AOM) and dextran sodium sulfate (DSS) treatments. The differential proteins in control and AOM/DSS-treated colon mucosa were determined using proteomic analysis; the kinetics of metabolic modifications were monitored by mitochondrial oxygen flux, extracellular acidification, and targeted metabolomics; the molecule linker between ER stress and metabolic modifications were identified by coimmunoprecipitation, KEGG pathway analysis, and the subcutaneous tumor model using gene-specific knockdown colon cancer cells. Tissue array analysis were used to evaluate the differential protein in cancer and cancer-adjacent tissues. Results: AOM/DSS treatment induced 38 tumors in 10 mice at the 14th week with the mean tumor size 9.35 ± 3.87 mm2, which was significantly decreased to 5.85 ± 0.95 mm2 by the ER stress inhibitor 4-phenylbutyric acid (4PBA). Seven differential proteins were determined from control (1,067 ± 48) and AOM/DSS-treated mucosa (1,077 ± 59); the level of ER protein PDIA2 (protein disulfide isomerase-associated 2) was increased over 7-fold in response to AOM/DSS treatment. PDIA2 interacted with 420 proteins that were involved in 8 signaling pathways, in particular with 53 proteins in metabolic pathways. PDIA2 translocated from ER to mitochondria and interacted with the components of complexes I and II to inhibit oxophosphorylation but increase glycolysis. Knockdown PDIA2 in colon cancer cells restored the metabolic imbalance and significantly repressed tumor growth in the xenograft animal model. 4PBA therapy inhibited the AOM/DSS-mediated overexpression of PDIA2 and metabolic modifications and suppressed colon cancer growth. In clinic, PDIA2 was overexpressed in colon cancer tissues rather than cancer-adjacent tissues and was related with the late stages and lymph node metastasis of colon cancer. Conclusions: Persistent ER stress reprograms the metabolism to promote the malignant transformation of chronic colitis; PDIA2 serves as a molecule linker between ER stress and metabolic reprogramming. The inhibition of ER stress restores metabolic homeostasis and attenuates the cancerous transformation of chronic inflammation.

16.
Org Biomol Chem ; 20(26): 5230-5233, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35621003

RESUMO

The clinically used DNA-alkylating drug streptozotocin (STZ) was investigated using a simple work-up as an O-methylating agent to transform various carboxylic acids, sulfonic acids and phosphorous acids into corresponding methyl esters, and did so with yields of up to 97% in 4 h at room temperature. Good substrate tolerance was observed, and benefited from the mild conditions and compatibility of the reaction with water.


Assuntos
Ácidos Carboxílicos , Ésteres , DNA/metabolismo , Metilação , Estreptozocina
17.
Emerg Microbes Infect ; 10(1): 1638-1648, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34346827

RESUMO

MW33 is a fully humanized IgG1κ monoclonal neutralizing antibody, and may be used for the prevention and treatment of coronavirus disease 2019 (COVID-19). We conducted a randomized, double-blind, placebo-controlled, single-dose, dose-escalation Phase 1 study to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of MW33. Healthy adults aged 18-45 years were sequentially enrolled into the 4, 10, 20, 40, and 60 mg/kg dose groups and infused with MW33 over 60 ± 15 min and followed for 85 days. All 42 enrolled participants completed the MW33 infusion, and 40 participants completed the 85-day follow-up period. 34 participants received a single infusion of 4 (n = 2), 10 (n = 8), 20 (n = 8), 40 (n = 8), and 60 mg/kg (n = 8) of MW33. 27 subjects in the test groups experienced 78 adverse events (AEs) post-dose, with an incidence of 79.4% (27/34). The most common AEs included abnormal laboratory test results, vascular and lymphatic disorders, and infectious diseases. The severity of AEs was mainly Grade 1 (92 AEs), and three Grade 2 and one Grade 4. The main PK parameters, maximum concentration (Cmax), and area under the concentration-time curve (AUC0-t, and AUC0-∞) in 34 subjects showed a linear kinetic relationship in the range of 10-60 mg/kg. The plasma half-life was approximately 25 days. The positive rates of serum ADAs and antibody titres were low with no evidence of an impact on safety or PK. In conclusion, MW33 was well-tolerated, demonstrated linear PK, with a lower positive rate of serum ADAs and antibody titres in healthy subjects.Trial registration: ClinicalTrials.gov identifier: NCT04427501.Trial registration: ClinicalTrials.gov identifier: NCT04533048.Trial registration: ClinicalTrials.gov identifier: NCT04627584.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , Adulto , COVID-19/diagnóstico , COVID-19/imunologia , Análise de Dados , Feminino , Humanos , Masculino , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
18.
Nanomaterials (Basel) ; 10(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322585

RESUMO

The cathode, a crucial constituent part of Li-ion batteries, determines the output voltage and integral energy density of batteries to a great extent. Among them, Ni-rich LiNixCoyMnzO2 (x + y + z = 1, x ≥ 0.6) layered transition metal oxides possess a higher capacity and lower cost as compared to LiCoO2, which have stimulated widespread interests. However, the wide application of Ni-rich cathodes is seriously hampered by their poor diffusion dynamics and severe voltage drops. To moderate these problems, a nanobrick Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode with a preferred orientation (110) facet was designed and successfully synthesized via a modified co-precipitation route. The galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) analysis of LiNi0.6Co0.2Mn0.2O2 reveal its superior kinetic performance endowing outstanding rate performance and long-term cycle stability, especially the voltage drop being as small as 67.7 mV at a current density of 0.5 C for 200 cycles. Due to its unique architecture, dramatically shortened ion/electron diffusion distance, and more unimpeded Li-ion transmission pathways, the current nanostructured LiNi0.6Co0.2Mn0.2O2 cathode enhances the Li-ion diffusion dynamics and suppresses the voltage drop, thus resulting in superior electrochemical performance.

19.
Eur J Med Chem ; 205: 112616, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949920

RESUMO

Based on the SAR of both α1-AR antagonists and 5α-reductase (5AR) inhibitors, the dual-acting agent 4-(1-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-1H-indol-3-yl)butanoic acid 4aaa was designed against BPH and synthesized by two steps of N-alkylation. One-pot protocol towards 4aaa was newly developed. With IL [C6min]Br as solvent, the yield of 4aaa was increased to 75.1% from 16.0% and the reaction time was shortened in 1.5 h from 48 h. 25 derivatives structurally based on arylpiperazine and indolyl butyric acid with alkyl linker were prepared. The protocol was futher extended to get another 14 derivatives wherein O-alkylation was involved, and applied to the synthesis of biologically efficient molecules DPQ and Aripiprazole. Expectedly, compound 4aaa exhibited dual inhibition of α1-AR and 5α-reductase, and exhibited no obvious cytotoxicity against human cells. The pharmacokinetic properties of 4aaa was also determined.


Assuntos
Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Líquidos Iônicos/química , Hiperplasia Prostática/tratamento farmacológico , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Ácido Butírico/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/uso terapêutico , Técnicas de Química Sintética , Humanos , Masculino , Receptores Androgênicos/metabolismo
20.
Inflammation ; 43(4): 1222-1232, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462546

RESUMO

Sepsis, a systemic inflammatory response mediated by excessive production of diverse inflammatory cytokines, remains the vital cause of morality in the intensive care unit (ICU). TLR4-MD2 (toll-like receptor 4-myeloid differentiation factor 2) complex activated by LPS serves as an effective target to decrease the inflammation during sepsis. In this study, we evaluated the effects of a new small molecule Z20 structural based on (2S, 3R, 4S)-chromene-3-carboxamide on LPS-induced sepsis in mice. We found Z20 markedly improved the survival rate and attenuated the multiply organs injury after LPS administration in mice. In addition, Z20 significantly alleviated organ inflammation as characterized by diminished inflammatory factors expression in vivo. Furthermore, by employing surface plasmon resonance (SPR) experiment, we identified that TLR4-MD2 complex was the potential target for Z20. Finally, we performed the safety assessment experiment to confirm the safety of Z20 in vivo. In conclusion, Z20, as a potential TLR4-MD2 inhibitor, effectively attenuated LPS-induced organ injury and inflammation.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico , Benzopiranos/síntese química , Benzopiranos/uso terapêutico , Insuficiência de Múltiplos Órgãos/prevenção & controle , Sepse/prevenção & controle , Animais , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/induzido quimicamente , Insuficiência de Múltiplos Órgãos/metabolismo , Células RAW 264.7 , Sepse/induzido quimicamente , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA