Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722055

RESUMO

Waterlogging stress (WS) hinders kernel development and directly reduces peanut yield; however, the mechanism of kernel filling in response to WS remains unknown. The waterlogging-sensitive variety Huayu 39 was subjected to WS for 3 days at 7 days after the gynophores touched the ground (DAG). We found that WS affected kernel filling at 14, 21, and 28 DAG. WS decreased the average filling rate and kernel dry weight, while transcriptome sequencing and widely targeted metabolomic analysis revealed that WS inhibited the gene expression in starch and sucrose metabolism, which reduced sucrose input and transformation ability. Additionally, genes related to ethylene and melatonin synthesis and the accumulation of tryptophan and methionine were upregulated in response to WS. WS upregulated the expression of the gene encoding tryptophan decarboxylase (AhTDC), and overexpression of AhTDC in Arabidopsis significantly reduced the seed length, width, and weight. Therefore, WS reduced the kernel-filling rate, leading to a reduction in the 100-kernel weight. This survey informs the development of measures that alleviate the negative impact of WS on peanut yield and quality and provides a basis for exploring high-yield and high-quality cultivation, molecular-assisted breeding, and waterlogging prevention in peanut farming.

2.
Yi Chuan ; 45(9): 801-812, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731234

RESUMO

Nitrogen is critical for peanut growth and development, and symbiotic nodulation and nitrogen fixation is one of the main ways for peanut to obtain nitrogen. The influence of exogenous nitrogen on nodule nitrogen fixation involves complex regulatory mechanisms, revealing the regulatory mechanisms of nitrogen on nodule nitrogen fixation is of great significance for realizing the potential of biological nitrogen fixation. In this review, we summarize the mechanism of "Crack entry" in the formation of peanut root nodule, the mechanism of symbiotic nodulation and quantitative regulation of peanut, and the regulatory mechanism of nitrogen affecting peanut nodulation. At present, the molecular mechanism by which nitrogen affects the interaction between Bradyrhizobium and peanut, thereby regulating nodulation, is still unclear. Therefore, future research should focus on the signal exchange, nodule number regulation, and nutrient exchange mechanism of nitrogen effects on Bradyrhizobium and peanut, which would provide a theoretical basis for improving nodule nitrogen fixation efficiency and peanut yield, and reduce chemical nitrogen fertilizer application.


Assuntos
Arachis , Nitrogênio
3.
Front Plant Sci ; 14: 1152824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143875

RESUMO

Peanut is an important oilseed crop around the world which provides vegetable oil, protein and vitamins for humans. Major latex-like proteins (MLPs) play important roles in plant growth and development, as well as responses to biotic and abiotic stresses. However, their biological function in peanut is still unclear. In this study, a genome-wide identification of MLP genes in cultivated peanut and two diploid ancestor species was analyzed to determine their molecular evolutionary characteristics and the expression profile under drought and waterlogging stress conditions. Firstly, a total of 135 MLP genes were identified from the genome of tetraploid peanut (Arachis hypogaea) and two diploid species Arachis. duranensis and Arachis. ipaensis. Then, phylogenetic analysis revealed that MLP proteins were divided into five different evolutionary groups. These genes were distributed unevenly at the ends of chromosomes 3, 5, 7, 8, 9 and 10 in three Arachis species. The evolution of MLP gene family in peanut was conserved and led by tandem and segmental duplication. The prediction analysis of cis-acting elements showed that the promoter region of peanut MLP genes contained different proportions of transcription factors, plant hormones-responsive elements and so on. The expression pattern analysis showed that they were differentially expressed under waterlogging and drought stress. These results of this study provide a foundation for further research on the function of the important MLP genes in peanut.

4.
PeerJ ; 10: e12741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35070503

RESUMO

Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (Φ PS II ), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. Φ PS II , Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.


Assuntos
Arachis , Superóxido Dismutase , Antioxidantes , Arachis/fisiologia , Melhoramento Vegetal , Folhas de Planta/fisiologia
6.
Plants (Basel) ; 10(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34834768

RESUMO

We aimed to elucidate the possible yield-increasing mechanisms through regulation of shade-avoidance responses at both physiological and molecular levels under monoseeding. Our results revealed that monoseeding decreased the main stem height but increased the main stem diameter and the number of branches and nodes compared to the traditional double- and triple-seeding patterns. The chlorophyll contents were higher under monoseeding than that under double- and triple-seeding. Further analysis showed that this, in turn, increased the net photosynthetic rate and reallocated higher levels of assimilates to organs. Monoseeding induced the expression patterns of Phytochrome B (Phy B) gene but decreased the expression levels of Phytochrome A (Phy A) gene. Furthermore, the bHLH transcription factors (PIF 1 and PIF 4) that interact with the phytochromes were also decreased under monoseeding. The changes in the expression levels of these genes may regulate the shade-avoidance responses under monoseeding. In addition, monoseeding increased pod yield at the same population density through increasing the number of pods per plant and 100-pod weight than double- and triple-seeding patterns. Thus, we inferred that monoseeding is involved in the regulation of shade-avoidance responsive genes and reallocating assimilates at the same population density, which in turn increased the pod yield.

7.
Front Plant Sci ; 12: 601771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276712

RESUMO

Waterlogging has negative effects on crop yield. Physiological and transcriptome data of two peanut cultivars [Zhongkaihua 1 (ZKH 1) and Huayu 39 (HY 39)] were studied under normal water supply and waterlogging stress for 5 or 10 days at the flowering stage. The results showed that the main stem height, the number of lateral branches, lateral branch length, and the stem diameter increased under waterlogging stress, followed by an increase in dry matter accumulation, which was correlated with the increase in the soil and plant analysis development (SPAD) and net photosynthetic rate (Pn) and the upregulation of genes related to porphyrin and chlorophyll metabolism and photosynthesis. However, the imbalance of the source-sink relationship under waterlogging was the main cause of yield loss, and waterlogging caused an increase in the sucrose and soluble sugar contents and a decrease in the starch content; it also decreased the activities of sucrose synthetase (SS) and sucrose phosphate synthetase (SPS), which may be due to the changes in the expression of genes related to starch and sucrose metabolism. However, the imbalance of the source-sink relationship led to the accumulation of photosynthate in the stems and leaves, which resulted in the decrease of the ratio of pod dry weight to total dry weight (PDW/TDW) and yield. Compared with ZKH 1, the PDW of HY 39 decreased more probably because more photosynthate accumulated in the stem and leaves of HY 39 and could not be effectively transported to the pod.

8.
Genes (Basel) ; 11(8)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796553

RESUMO

Drought negatively affects the growth and yield of terrestrial crops. Seed priming, pre-exposing seed to a compound, could induce improved tolerance and adaptation to stress in germinated plants. To understand the effects and regulatory mechanism of seed priming with brassinosteroid (BR) on peanut plants, we treated seeds with five BR concentrations and examined dozens of physiological and biochemical features, and transcriptomic changes in leaves under well-watered and drought conditions. We found optimal 0.15 ppm BR priming could reduce inhibitions from drought and increase the yield of peanut, and priming effects are dependent on stage of plant development and duration of drought. BR priming induced fewer differentially expressed genes (DEGs) than no BR priming under well-watered condition. Drought with BR priming reduced the number of DEGs than drought only. These DEGs were enriched in varied gene ontologies and metabolism pathways. Downregulation of DEGs involved in both light perceiving and photosynthesis in leaves is consistent with low parameters of photosynthesis. Optimal BR priming partially rescued the levels of growth promoting auxin and gibberellin which were largely reduced by drought, and increased levels of defense associated abscisic acid and salicylic acid after long-term drought. BR priming induced many DEGs which function as kinase or transcription factor for signal cascade under drought. We proposed BR priming-induced regulatory responses will be memorized and recalled for fast adaptation in later drought stress. These results provide physiological and regulatory bases of effects of seed priming with BR, which can help to guide the framing improvement under drought stress.


Assuntos
Adaptação Fisiológica , Arachis/fisiologia , Brassinosteroides/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Fotossíntese , Transdução de Sinais , Estresse Fisiológico , Biomassa , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Estudo de Associação Genômica Ampla , Modelos Biológicos , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/metabolismo , Sementes
9.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722456

RESUMO

Intercropping improves land utilization with more crops grown together; however, shorter crops in intercropping experience stress, being shaded by the taller crops. Systematic changes in phenotype, physiology, yield, and gene regulation under shade stress in peanut are largely unknown, although shade responses have been well analyzed in model plants. We exposed peanut plants to simulated 40% and 80% shade for 15 and 30 days at the seedling stage, flowering stage, and both stages. Shade caused the increased elongation growth of the main stem, internode, and leaf, and elongation was positively associated with auxin levels. Shade stress reduced peanut yield. Further comparative RNA-seq analyses revealed expressional changes in many metabolism pathways and common core sets of expressional regulations in all shade treatments. Expressional downregulation of most genes for light-harvesting and photosynthesis agreed with the observed decreased parameters of photosynthesis processes. Other major regulations included expressional downregulation of most core genes in the sucrose and starch metabolism, and growth-promoting genes in plant hormone signal pathways. Together, the results advance our understanding of physiological and molecular regulation in shade avoidance in peanut, which could guide the breeding designing in the intercropping system.


Assuntos
Arachis/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Plântula/crescimento & desenvolvimento , Estresse Fisiológico , Sacarose/metabolismo
10.
Sensors (Basel) ; 18(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149592

RESUMO

: Remote sensing can be a rapid, accurate, and simple method for assessing pest damage on plants. The objectives of this study were to identify spectral wavelengths sensitive to cotton aphid infestation. Then, the normalized difference spectral indices (NDSI) and ratio spectral indices (RSI) based on the leaf spectrum were obtained within 350⁻2500 nm, and their correlation with infestation were qualified. The results showed that leaf spectral reflectance decreased in the visible range (350⁻700 nm) and the near-infrared range (NIR, 700⁻1300 nm) as aphid damage severity increased, and significant differences were found in blue, green, red, NIR and short-wave infrared (SWIR) band regions between different grades of aphid damage severity. Decrease in Chlorophyll a (Chl a) pigment was more significant than that in Chlorophyll (Chl b) in the infested plants and the Chl a/b ratio showed a decreasing trend with increase in aphid damage severity. The sensitive spectral bands were mainly within NIR and SWIR ranges. The best spectral indices NDSI (R678, R1471) and RSI (R1975, R1904) were formulated with these sensitive spectral regions through reducing precise sampling method. These new indices along with 16 other stress related indices compiled from literature were further tested for their ability to detect aphid damage severity. The two indices in this study showed significantly higher coefficients of determination (R² of 0.81 and 0.81, p < 0.01) and the least RMSE values (RMSE of 0.50 and 0.49), and hence have potential application in assessing aphid infestation severity in cotton.


Assuntos
Afídeos/fisiologia , Gossypium/química , Gossypium/parasitologia , Análise Espectral/métodos , Estresse Fisiológico/fisiologia , Animais , Clorofila/análise , Clorofila/metabolismo , Gossypium/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA