Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(19): 10995-11001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701424

RESUMO

The titer of the microbial fermentation products can be increased by enzyme engineering. l-Sorbosone dehydrogenase (SNDH) is a key enzyme in the production of 2-keto-l-gulonic acid (2-KLG), which is the precursor of vitamin C. Enhancing the activity of SNDH may have a positive impact on 2-KLG production. In this study, a computer-aided semirational design of SNDH was conducted. Based on the analysis of SNDH's substrate pocket and multiple sequence alignment, three modification strategies were established: (1) expanding the entrance of SNDH's substrate pocket, (2) engineering the residues within the substrate pocket, and (3) enhancing the electron transfer of SNDH. Finally, mutants S453A, L460V, and E471D were obtained, whose specific activity was increased by 20, 100, and 10%, respectively. In addition, the ability of Gluconobacter oxidans WSH-004 to synthesize 2-KLG was improved by eliminating H2O2. This study provides mutant enzymes and metabolic engineering strategies for the microbial-fermentation-based production of 2-KLG.


Assuntos
Proteínas de Bactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Gluconobacter/enzimologia , Gluconobacter/genética , Gluconobacter/metabolismo , Açúcares Ácidos/metabolismo , Açúcares Ácidos/química , Fermentação , Engenharia de Proteínas , Engenharia Metabólica , Desidrogenases de Carboidrato/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/química , Cinética
2.
J Agric Food Chem ; 72(15): 8664-8673, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564669

RESUMO

Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, and retinoic acid, necessitating purification. To achieve efficient biosynthesis of retinol in Yarrowia lipolytica, we improved the metabolic flux of ß-carotene to provide sufficient precursors for retinol in this study. Coupled with the optimization of the expression level of ß-carotene 15,15'-dioxygenase, de novo production of retinol was achieved. Furthermore, Tween 80 was used as an extractant and butylated hydroxytoluene as an antioxidant to extract intracellular retinol and prevent retinol oxidation, respectively. This strategy significantly increased the level of retinol production. By optimizing the enzymes converting retinal to retinol, the proportion of extracellular retinol in the produced retinoids reached 100%, totaling 1042.3 mg/L. Finally, total retinol production reached 5.4 g/L through fed-batch fermentation in a 5 L bioreactor, comprising 4.2 g/L extracellular retinol and 1.2 g/L intracellular retinol. This achievement represents the highest reported titer so far and advances the industrial production of retinol.


Assuntos
Vitamina A , Yarrowia , Humanos , Vitamina A/metabolismo , Fermentação , Yarrowia/genética , Yarrowia/metabolismo , Reatores Biológicos , beta Caroteno/metabolismo , Redes e Vias Metabólicas , Engenharia Metabólica
3.
J Agric Food Chem ; 72(9): 4814-4824, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38389392

RESUMO

Campesterol is a kind of important functional food additive. Therefore, stable and efficient campesterol biosynthesis is significant. Herein, we first knocked out the sterol 22-desaturase gene in Saccharomyces cerevisiae and expressed sterol Δ7-reductase from Pangasianodon hypophthalmus, obtaining a strain that produced 6.6 mg/L campesterol. Then, the modular expression of campesterol synthesis enzymes was performed, and a campesterol titer of 88.3 mg/L was achieved. Because campesterol is a lipid-soluble macromolecule, we promoted lipid droplet formation by exploring regulatory factors, and campesterol production was improved to 169.20 mg/L. Next, triacylglycerol lipase was used to achieve compartment campesterol synthesis. After enhancing the expression of sterol Δ7-reductase and screening cations, the campesterol titer reached 438.28 mg/L in a shake flask and 1.44 g/L in a 5 L bioreactor, which represents the highest campesterol titer reported to date. Metabolic regulation combined with lipid droplet engineering may be useful for the synthesis of other steroids as well.


Assuntos
Colesterol/análogos & derivados , Fitosteróis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica , Gotículas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Oxirredutases/metabolismo
4.
3 Biotech ; 14(3): 85, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379664

RESUMO

(2S)-Naringenin, a dihydro-flavonoid, serves as a crucial precursor for flavonoid synthesis due to its extensive medicinal values and physiological functions. A pathway for the synthesis of (2S)-naringenin from glucose has previously been constructed in Saccharomyces cerevisiae through metabolic engineering. However, this synthetic pathway of (2S)-naringenin is lengthy, and the genes involved in the competitive pathway remain unknown, posing challenges in significantly enhancing (2S)-naringenin production through metabolic modification. To address this issue, a novel high-throughput screening (HTS) method based on color reaction combined with a random mutagenesis method called atmospheric room temperature plasma (ARTP), was established in this study. Through this approach, a mutant (B7-D9) with a higher titer of (2S)-naringenin was obtained from 9600 mutants. Notably, the titer was enhanced by 52.3% and 19.8% in shake flask and 5 L bioreactor respectively. This study demonstrates the successful establishment of an efficient HTS method that can be applied to screen for high-titer producers of (2S)-naringenin, thereby greatly improving screening efficiency and providing new insights and solutions for similar product screenings.

5.
J Agric Food Chem ; 72(10): 5348-5357, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412053

RESUMO

Lutein is a high-value tetraterpenoid carotenoid that is widely used in feed, cosmetics, food, and drugs. Microbial synthesis of lutein is an important method for green and sustainable production, serving as an alternative to plant extraction methods. However, an inadequate precursor supply and low catalytic efficiency of key pathway enzymes are the main reasons for the low efficacy of microbial synthesis of lutein. In this study, some strategies, such as enhancing the MVA pathway and localizing α-carotene synthase OluLCY within the subcellular organelles in Yarrowia lipolytica, were adopted to enhance the synthesis of precursor α-carotene, which resulted in a 10.50-fold increase in α-carotene titer, reaching 38.50 mg/L. Subsequently, by improving hydroxylase activity with truncated N-terminal transport peptide and locating hydroxylases to subcellular organelles, the final strain L9 producing 75.25 mg/L lutein was obtained. Eventually, a lutein titer of 675.40 mg/L (6.13 mg/g DCW) was achieved in a 5 L bioreactor by adding the antioxidant 2,6-ditert-butyl-4-methylphenol. This study realizes de novo synthesis of lutein in Y. lipolytica for the first time and achieves the highest lutein titer reported so far.


Assuntos
Yarrowia , Yarrowia/metabolismo , Luteína/metabolismo , Reatores Biológicos , Carotenoides/metabolismo , Engenharia Metabólica/métodos
6.
Bioresour Technol ; 395: 130379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281547

RESUMO

Squalene, a high-value acyclic triterpenoid compound, is broadly used in the food and medical industries. Although the large acetyl-CoA pool and hydrophobic space of Yarrowia lipolytica are suitable for the accumulation of squalene, the current production level in Y. lipolytica is still not sufficient for industrial production. In this study, two rounds of multicopy integration of genes encoding key enzymes were performed to enhance squalene anabolic flux in the cytoplasm. Furthermore, the mevalonate pathway was imported into peroxisomes through the compartmentalization strategy, and the production of squalene was significantly increased. By augmenting the acetyl-CoA supply in peroxisomes and the cytoplasm, the squalene was boosted to 2549.1 mg/L. Finally, the squalene production reached 51.2 g/L by fed-batch fermentation in a 5-L bioreactor. This is the highest squalene production reported to date for microbial production, and this study lays the foundation for the synthesis of steroids and squalene derivatives.


Assuntos
Esqualeno , Yarrowia , Esqualeno/metabolismo , Metabolismo dos Lipídeos , Yarrowia/genética , Yarrowia/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Citoplasma/metabolismo , Engenharia Metabólica
7.
J Agric Food Chem ; 72(1): 566-576, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154088

RESUMO

Curcumin is a natural phenylpropanoid compound with various biological activities and is widely used in food and pharmaceuticals. A de novo curcumin biosynthetic pathway was constructed in Escherichia coli BL21(DE3). Optimization of the curcumin biosynthesis module achieved a curcumin titer of 26.8 ± 0.6 mg/L. Regulating the metabolic fluxes of the ß-oxidation pathway and fatty acid elongation cycle and blocking the endogenous malonyl-CoA consumption pathway increased the titer to 113.6 ± 7.1 mg/L. Knockout of endogenous curcumin reductase (curA) and intermediate product detoxification by heterologous expression of the solvent-resistant pump (srpB) increased the titer to 137.5 ± 3.0 mg/L. A 5 L pilot-scale fermentation, using a three-stage pH alternation strategy, increased the titer to 696.2 ± 20.9 mg/L, 178.5-fold higher than the highest curcumin titer from de novo biosynthesis previously reported, thereby laying the foundation for efficient biosynthesis of curcumin and its derivatives.


Assuntos
Curcumina , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Curcumina/metabolismo , Malonil Coenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Vias Biossintéticas , Engenharia Metabólica
8.
Appl Environ Microbiol ; 89(12): e0145723, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38047643

RESUMO

IMPORTANCE: In this study, the mechanism of chromatin regulator Eaf3p regulating nitrogen metabolism in S. cerevisiae was investigated. It provides theoretical support for epigenetic modifications of cells to alter the level of histone modifications, coordinate the expression of multiple genes, and make it more conducive to the co-metabolism of multiple nitrogen sources. Moreover, it provides new ideas for industrial brewing yeast strains to achieve nitrogen source metabolism balance, reduce the accumulation of harmful nitrogen metabolites, and improve fermentation efficiency. This study provides a reference for changing the performance of microbial strains and improving the quality of traditional fermentation products and provides a theoretical basis for studying epigenetic modification and nitrogen metabolism regulation. It has an important theoretical explanation and practical application value. In addition, this study also provides useful clues for the study.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Transativadores/genética , Vinho/análise , Fermentação , Nitrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Agric Food Chem ; 71(46): 17842-17851, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37941337

RESUMO

Glycosylation can enhance the solubility and stability of flavonoids. The main limitation of the glycosylation process is low intracellular uridine diphosphate glucose (UDPG) availability. This study aimed to create a glycosylation platform strain in Escherichia coli BL21(DE3) by multiple metabolic engineering of the UDPG supply. Glycosyltransferase TcCGT1 was introduced to synthesize vitexin and orientin from apigenin and luteolin, respectively. To further expand this glycosylation platform strain, not only were UDP rhamnose and UDP galactose synthesis pathways constructed, but rhamnosyltransferase (GtfC) and galactosyltransferase (PhUGT) were also introduced, respectively. In a 5 L bioreactor with apigenin, luteolin, kaempferol, and quercetin as glycosyl acceptors, vitexin, orientin, afzelin, quercitrin, hyperoside, and trifolin glycosylation products reached 17.2, 36.5, 5.2, 14.1, 6.4, and 11.4 g/L, respectively, the highest titers reported to date for all. The platform strain has great potential for large-scale production of glycosylated flavonoids.


Assuntos
Apigenina , Uridina Difosfato Glucose , Glicosilação , Uridina Difosfato Glucose/metabolismo , Apigenina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Luteolina/metabolismo , Flavonoides/metabolismo
10.
3 Biotech ; 13(12): 384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37928439

RESUMO

Monoterpenes are among the important natural plant terpenes. Monoterpenes usually have the characteristics of volatility and strong aroma. ß-Myrcene and its isomer (E)-ß-ocimene are typical acyclic monoterpenes. They are high-value monoterpenes that have been widely applied in foods, cosmetics, and medicines. However, large-scale commercial production of ß-myrcene and (E)-ß-ocimene is restricted by their production method that mainly involves extraction from plant essential oils. Currently, an alternative synthetic route utilizing an engineered microbial platform was proposed for effective production. This study used a Saccharomyces cerevisiae strain previously constructed for squalene production as the starting strain. Farnesyl diphosphate synthase (Erg20) expression was weakened by promoter replacement and screened for optimal myrcene synthase (MS) and ocimene synthase (OS) activities. In the resulting S. cerevisiae engineered for ß-myrcene and (E)-ß-ocimene synthesis, titers of ß-myrcene and (E)-ß-ocimene were enhanced by a fusion expressing a mutant Erg20* with the obtained monoterpene synthase and optimizing the added solvent in a two-phase fermentation system. Finally, by scaling up in a 5-L fermenter, 8.12 mg/L of ß-myrcene was obtained, which was first reported in yeast, and 34.56 mg/L of (E)-ß-ocimene was obtained, which is the highest reported to date. This study provides a new synthesis route for ß-myrcene and (E)-ß-ocimene. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03818-2.

11.
Bioresour Technol ; 390: 129862, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839643

RESUMO

Ectoine, a natural protective agent, is naturally synthesized at low titers by some extreme environment microorganisms that are usually difficult to culture. There is a need for an efficient and eco-friendly ectoine production process. In this study, Escherichia coli BL21(DE3) with the ectABC gene cluster from Halomonas venusta achieved 1.7 g/L ectoine. After optimizing the expression plasmid, 2.1 g/L ectoine was achieved. Besides, the aspartate kinase mutant LysCT311I from Corynebacterium glutamicum and aspartate semialdehyde dehydrogenase from Halomonas elongata were overexpressed to increase precursors supply. Furthermore, the rate-limiting enzyme EctB was semirationally engineered, and the E407D mutation enhanced ectoine production by 13.8 %. To improve acetyl-CoA supply, the non-oxidative glycolysis pathway was introduced. Overall, the optimized strain ECT9-5 produced 67.1 g/L ectoine by fed-batch fermentation with a 0.3 g/g of glucose and the kinetic model resulted in a good fit.


Assuntos
Diamino Aminoácidos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Diamino Aminoácidos/genética , Diamino Aminoácidos/metabolismo , Fermentação
12.
Bioresour Technol ; 384: 129316, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315626

RESUMO

Direct production of 2-keto-L-gulonic acid (2-KLG, the precursor of vitamin C) from D-glucose through 2,5-diketo-D-gluconic acid (2,5-DKG) is a promising alternative route. To explore the pathway of producing 2-KLG from D-glucose, Gluconobacter oxydans ATCC9937 was selected as a chassis strain. It was found that the chassis strain naturally has the ability to synthesize 2-KLG from D-glucose, and a new 2,5-DKG reductase (DKGR) was found on its genome. Several major issues limiting production were identified, including the insufficient catalytic capacity of DKGR, poor transmembrane movement of 2,5-DKG and imbalanced D-glucose consumption flux inside and outside of the host strain cells. By identifying novel DKGR and 2,5-DKG transporter, the whole 2-KLG biosynthesis pathway was systematically enhanced by balancing intracellular and extracellular D-glucose metabolic flux. The engineered strain produced 30.5 g/L 2-KLG with a conversion ratio of 39.0%. The results pave the way for a more economical large-scale fermentation process for vitamin C.


Assuntos
Gluconobacter oxydans , Gluconobacter oxydans/metabolismo , Glucose/metabolismo , Açúcares Ácidos/metabolismo , Ácido Ascórbico , Fermentação
13.
J Agric Food Chem ; 71(16): 6389-6397, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052370

RESUMO

Squalene is a triterpene that can be obtained from fish and plant oils. It is important in cosmetics and vaccines and is a precursor for many high-value terpenes and steroids. In order to increase squalene accumulation, the mevalonate pathway was systematically enhanced. Accumulation of squalene tended to increase when ethanol was added as a carbon source during fermentation, but a high concentration of ethanol affected both the strain growth and accumulation of products. By overexpressing the key trehalose synthesis gene TPS1 and the heat shock protein gene HSP104, the content of trehalose by Saccharomyces cerevisiae (S. cerevisiae) was enhanced, and stress caused by ethanol was relieved. The OD600 value of the modified S. cerevisiae strain was increased by 80.2%, its ethanol tolerance was increased to 30 g/L, and it retained excellent activity with 50 g/L ethanol. After optimizing the fermentation conditions, the squalene titer in a 5 L bioreactor reached 27.3 g/L and the squalene content was 650 mg/g dry cell weight, the highest squalene production parameters reported to date for a microorganism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Etanol/metabolismo , Trealose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação , Engenharia Metabólica , Proteínas de Choque Térmico/genética
14.
Biochem Biophys Res Commun ; 662: 31-38, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099808

RESUMO

Chromatin regulation is an important gene expression/regulation system, but little is known about how it affects nitrogen metabolism in Saccharomyces cerevisiae. A previous study demonstrated the regulatory role of the chromatin regulator Ahc1p on multiple key genes of nitrogen metabolism in S. cerevisiae, but the regulatory mechanism remains unknown. In this study, multiple key nitrogen metabolism genes directly regulated by Ahc1p were identified, and the transcription factors interacting with Ahc1p were analyzed. It was ultimately found that Ahc1p may regulate some key nitrogen metabolism genes in two ways. First, Ahc1p acts as a co-factor and is recruited with transcription factors such as Rtg3p or Gcr1p to facilitate transcription complex binding to target gene core promoters and promote transcription initiation. Second, Ahc1p binds at enhancers to promote the transcription of target genes in concert with transcription factors. This study furthers the understanding of the regulatory network of nitrogen metabolism in S. cerevisiae from an epigenetic perspective.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Cromatina/genética , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Metab Eng ; 76: 50-62, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634840

RESUMO

Carminic acid is a natural red dye extracted from the insect Dactylopius coccus. Due to its ideal dying effect and high safety, it is widely used in food and cosmetics industries. Previous study showed that introduction of polyketide synthase (OKS) from Aloe arborescens, cyclase (ZhuI) and aromatase (ZhuJ) from Streptomyces sp. R1128, and C-glucosyltransferase (UGT2) from D. coccus into Aspergillus nidulans could achieve trace amounts of de novo production. These four genes were introduced into Saccharomyces cerevisiae, but carminic acid was not detected. Analysis of the genome of A. nidulans revealed that 4'-phosphopantetheinyl transferase (NpgA) and monooxygenase (AptC) are essential for de novo biosynthesis of carminic acid in S. cerevisiae. Additionally, endogenous hydroxylase (Cat5) from S. cerevisiae was found to be responsible for hydroxylation of flavokermesic acid to kermesic acid. Therefore, all enzymes and their functions in the biosynthesis of carminic acid were explored and reconstructed in S. cerevisiae. Through systematic pathway engineering, including regulating enzyme expression, enhancing precursor supply, and modifying the ß-oxidation pathway, the carminic acid titer in a 5 L bioreactor reached 7580.9 µg/L, the highest yet reported for a microorganism. Heterologous reconstruction of the carminic acid biosynthetic pathway in S. cerevisiae has great potential for de novo biosynthesis of anthraquinone dye.


Assuntos
Carmim , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Carmim/metabolismo , Vias Biossintéticas/genética , Antraquinonas/metabolismo , Oxirredução , Engenharia Metabólica
16.
Food Res Int ; 162(Pt A): 111925, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461274

RESUMO

Patatin is a useful plant protein with excellent gelation properties that could be used as a gelling agent in the food industry. However, the commercial production of patatin is limited because the traditional extraction methods are inefficient and time consuming. Production of patatin with gelation properties by microorganisms is a promising alternative route. In this study, 1424.5 mg/L patatin storage protein with great gelation properties could be obtained in a 5-L bioreactor after optimization of the signal peptide, the promoter, and the fed-batch process when a Pichia pastoris GS115, but not Escherichia coli, expression system was used. Compared with commercial potato-extracted patatins, P. pastoris-derived patatins showed better gelation properties, such as a lower gel-forming concentration and gelation temperature. In addition, the gel strength of P. pastoris-derived patatins was comparable with that of potato-extracted patatins. These results suggested that P. pastoris-derived patatins have the potential to replace current potato-derived ones, which are now widely used in plant-based meat products.


Assuntos
Saccharomycetales , Solanum tuberosum , Gelatina , Carne , Proteínas de Plantas , Solanum tuberosum/genética , Excipientes , Escherichia coli/genética
17.
Front Bioeng Biotechnol ; 10: 987796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118574

RESUMO

Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L-1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g-1 and a productivity of 1.24 g L-1 h-1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L-1, with a glucose yield of 0.60 g g-1 and a productivity of 1.29 g L-1 h-1.

18.
Front Bioeng Biotechnol ; 10: 918277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875491

RESUMO

D-Glucose directly generates 2-keto-L-gulonic acid (2-KLG, precursor of vitamin C) through the 2,5-diketo-D-gluconic acid (2,5-DKG) pathway. 2,5-DKG is the main rate-limiting factor of the reaction, and there are few relevant studies on it. In this study, a more accurate quantitative method of 2,5-DKG was developed and used to screen G. oxydans ATCC9937 as the chassis strain for the production of 2,5-DKG. Combining the metabolite profile analysis and knockout and overexpression of production strain, the non-enzymatic browning of 2,5-DKG was identified as the main factor leading to low yield of the target compound. By optimizing the fermentation process, the fermentation time was reduced to 48 h, and 2,5-DKG production peaked at 50.9 g/L, which was 139.02% higher than in the control group. Effectively eliminating browning and reducing the degradation of 2,5-DKG will help increase the conversion of 2,5-DKG to 2-KLG, and finally, establish a one-step D-glucose to 2-KLG fermentation pathway.

19.
Synth Syst Biotechnol ; 7(3): 941-948, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35664931

RESUMO

Cobalamin is an essential human vitamin widely used in the pharmaceutical, food, and feed additive industries and currently produced by bacteria or archaea. Ensifer adhaerens HY-1 is an industrial strain that also produces cobalamin. However production outputs are poor and the specific synthesis pathways require characterization. In this study, the whole genome sequence of E. adhaerens HY-1 was generated and annotated, and genes associated with cobalamin biosynthesis were identified. Then, three genes, CobSV, CobQ, and CobW were identified as the most efficient ones for enhancing cobalamin synthesis. By transcriptome sequencing of E. adhaerens HY-1 cells at different growth stages, 65 endogenous promoters with different gradient strengths were identified. After combined expression of different strength promoters and key genes, a high cobalamin-producing recombinant strain, 'hmm' (genotype: P metH -CobSV-P ibpA -CobQ-P mdh -CobW), was generated. Cobalamin production was 143.8 mg/L in shaking flasks, which was 41.0% higher than the original strain. Cobalamin production was further enhanced to 171.2 mg/L using fed-batch fermentation. Importantly, our data and novel approach provide important references for the analysis of cobalamin synthesis and other metabolites in complex metabolic pathways.

20.
Front Microbiol ; 13: 883934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620110

RESUMO

There is a complex regulatory network of nitrogen metabolism in Saccharomyces cerevisiae, and many details of this regulatory network have not been revealed. This study explored the global regulation of nitrogen metabolism in S. cerevisiae from an epigenetic perspective. Comparative transcriptome analysis of S. cerevisiae S288C treated with 30 nitrogen sources identified nine chromatin regulators (CRs) that responded significantly to different nitrogen sources. Functional analysis showed that among the CRs identified, Ahc1p and Eaf3p promoted the utilization of non-preferred nitrogen sources through global regulation of nitrogen metabolism. Ahc1p regulated nitrogen metabolism through amino acid transport, nitrogen catabolism repression (NCR), and the Ssy1p-Ptr3p-Ssy5p signaling sensor system. Eaf3p regulated nitrogen metabolism via amino acid transport and NCR. The regulatory mechanisms of the effects of Ahc1p and Eaf3p on nitrogen metabolism depended on the function of their histone acetyltransferase complex ADA and NuA4. These epigenetic findings provided new insights for a deeper understanding of the nitrogen metabolism regulatory network in S. cerevisiae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA