Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 1075072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713551

RESUMO

Objective: To investigate the diagnostic value of diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) whole-lesion histogram parameters in differentiating benign and malignant solitary pulmonary lesions (SPLs). Materials and Methods: Patients with SPLs detected by chest CT examination and with further routine MRI, DKI and IVIM-DWI functional sequence scanning data were recruited. According to the pathological results, SPLs were divided into a benign group and a malignant group. Independent samples t tests (normal distribution) or Mann‒Whitney U tests (nonnormal distribution) were used to compare the differences in DKI (Dk, K), IVIM (D, D*, f) and ADC whole-lesion histogram parameters between the benign and malignant SPL groups. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of the histogram parameters and determine the optimal threshold. The area under the curve (AUC) of each histogram parameter was compared by the DeLong method. Spearman rank correlation was used to analyze the correlation between histogram parameters and malignant SPLs. Results: Most of the histogram parameters for diffusion-related values (Dk, D, ADC) of malignant SPLs were significantly lower than those of benign SPLs, while most of the histogram parameters for the K value of malignant SPLs were significantly higher than those of benign SPLs. DKI (Dk, K), IVIM (D) and ADC were effective in differentiating benign and malignant SPLs and combined with multiple parameters of the whole-lesion histogram for the D value, had the highest diagnostic efficiency, with an AUC of 0.967, a sensitivity of 90.00% and a specificity of 94.03%. Most of the histogram parameters for the Dk, D and ADC values were negatively correlated with malignant SPLs, while most of the histogram parameters for the K value were positively correlated with malignant SPLs. Conclusions: DKI (Dk, K) and IVIM (D) whole-lesion histogram parameters can noninvasively distinguish benign and malignant SPLs, and the diagnostic performance is better than that of DWI. Moreover, they can provide additional information on SPL microstructure, which has important significance for guiding clinical individualized precision diagnosis and treatment and has potential clinical application value.

2.
Front Med (Lausanne) ; 8: 753055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926501

RESUMO

Objective: To assess the performance of a novel deep learning (DL)-based artificial intelligence (AI) system in classifying computed tomography (CT) scans of pneumonia patients into different groups, as well as to present an effective clinically relevant machine learning (ML) system based on medical image identification and clinical feature interpretation to assist radiologists in triage and diagnosis. Methods: The 3,463 CT images of pneumonia used in this multi-center retrospective study were divided into four categories: bacterial pneumonia (n = 507), fungal pneumonia (n = 126), common viral pneumonia (n = 777), and COVID-19 (n = 2,053). We used DL methods based on images to distinguish pulmonary infections. A machine learning (ML) model for risk interpretation was developed using key imaging (learned from the DL methods) and clinical features. The algorithms were evaluated using the areas under the receiver operating characteristic curves (AUCs). Results: The median AUC of DL models for differentiating pulmonary infection was 99.5% (COVID-19), 98.6% (viral pneumonia), 98.4% (bacterial pneumonia), 99.1% (fungal pneumonia), respectively. By combining chest CT results and clinical symptoms, the ML model performed well, with an AUC of 99.7% for SARS-CoV-2, 99.4% for common virus, 98.9% for bacteria, and 99.6% for fungus. Regarding clinical features interpreting, the model revealed distinctive CT characteristics associated with specific pneumonia: in COVID-19, ground-glass opacity (GGO) [92.5%; odds ratio (OR), 1.76; 95% confidence interval (CI): 1.71-1.86]; larger lesions in the right upper lung (75.0%; OR, 1.12; 95% CI: 1.03-1.25) with viral pneumonia; older age (57.0 years ± 14.2, OR, 1.84; 95% CI: 1.73-1.99) with bacterial pneumonia; and consolidation (95.8%, OR, 1.29; 95% CI: 1.05-1.40) with fungal pneumonia. Conclusion: For classifying common types of pneumonia and assessing the influential factors for triage, our AI system has shown promising results. Our ultimate goal is to assist clinicians in making quick and accurate diagnoses, resulting in the potential for early therapeutic intervention.

3.
Springerplus ; 5(1): 1046, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462494

RESUMO

As a regulator of coagulation, abnormal Protein Z (PZ) expression may lead to the formation of blood clots in humans. While previous studies have shown that PZ protein is altered in several types of cancer, however, additional observations are needed to understand the complex biology involved. Herein, we investigated local alterations in PZ expression in lung adenocarcinomas by measuring gene and protein expression in both cancerous and normal lung tissues. Twenty-two (22) specimens of lung adenocarcinoma and 22 specimens of normal lung tissues from human patients were compared for the expression of PZ. In addition, A549 adenocarcinoma cells were compared to a normal epithelial cell line, 16-HBE, for in vitro PZ expression. In tissues and cells, PZ protein and gene expression were determined using western blot, immunohistochemistry and PCR. Lung adenocarcinoma tissues showed elevated expression of both PZ mRNA and protein compared with healthy tissue. Only protein expression was increased in cultured cell lines, which holds implications for the dominant source of PZ in tissues, as well as protein modifications necessary for PZ function. Protein Z appears to be associated with the presence of lung adenocarcinoma and may be a viable prognostic biomarker for lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA