Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Food Chem ; 450: 139296, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636381

RESUMO

Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.

2.
Food Chem X ; 22: 101378, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665626

RESUMO

The interactions among small molecular functional components (FCTs) within a food matrix have become a focal point for enhancing their stability and bioactivities. Jiuzao glutelin (JG) is a mixed plant protein within Jiuzao (a protein-rich baijiu distillation by-product). This study aimed to explore the interactions between JG and selected FCTs, including resveratrol (RES), quercetin (QUE), curcumin (CUR), and azelaic acid (AZA), and the consequential impact on stability and antioxidant activity of the complexes. The findings conclusively demonstrated that the interactions between JG and the FCTs significantly enhanced the storage stability of the complexes. Moreover, the antioxidant activity of the complexes exhibited improvement compared to their individual counterparts. This study underscores the notion that JG and FCTs mutually reinforce, exerting positive effects on stability and antioxidant activity. This symbiotic relationship can be strategically employed to augment the quality of proteins and enhance the functional properties of bioactive components through these interactions.

3.
Int J Biol Macromol ; 267(Pt 1): 131438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583845

RESUMO

A glutenin (G)-chitosan (CS) complex (G-CS) was cross-linked by water annealing with aim to prepare structured 3D porous cultured meat scaffolds (CMS) here. The CMS has pore diameters ranging from 18 to 67 µm and compressive moduli from 16.09 to 60.35 kPa, along with the mixing ratio of G/CS. SEM showed the porous organized structure of CMS. FTIR and CD showed the increscent content of α-helix and ß-sheet of G and strengthened hydrogen-bondings among G-CS molecules, which strengthened the stiffness of G-CS. Raman spectra exhibited an increase of G concentration resulted in higher crosslinking of disulfide-bonds in G-CS, which aggrandized the bridging effect of G-CS and maintained its three-dimensional network. Cell viability assay and immuno-fluorescence staining showed that G-CS effectively facilitated the growth and myogenic differentiation of porcine skeletal muscle satellite cells (PSCs). CLSM displayed that cells first occupied the angular space of hexagon and then ring-growth circle of PSCs were orderly formed on G-CS. The texture and color of CMS which loaded proliferated PSCs were fresh-meat like. These results showed that physical cross-linked G-CS scaffolds are the biocompatible and stable adaptable extracellular matrix with appropriate architectural cues and natural micro-environment for structured CM models.


Assuntos
Quitosana , Carne , Alicerces Teciduais , Quitosana/química , Animais , Alicerces Teciduais/química , Porosidade , Suínos , Engenharia Tecidual/métodos , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carne in vitro
4.
J Sci Food Agric ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546005

RESUMO

BACKGROUND: Tangerine peel is rich in flavonoids, particularly hesperidin, which has anti-inflammatory, antioxidant and anticancer biological activities. However, it is often wasted during citrus processing. The current common extraction method for hesperidin is solvent extraction, which has the characteristics of low extraction rate and high contamination. The aim of this study was to investigate the effect of pulsed electric field-assisted alkali dissolution extraction, followed by an acidification precipitation method, on the extraction rate and structure of hesperidin from tangerine peel. RESULTS: The results showed that the selected factors (material/liquid ratio, electric field intensity and pulse number) had a significant effect on the extraction yield. An optimum condition of 66.00 mL g-1, 4.00 kV cm-1 and 35.00 pulses gave the maximum amount (669.38 µg mL-1), which was consistent with the theoretically predicted value by software (672.10 µg mL-1), indicating that the extraction process was feasible. In addition, the purified extract was further identified as hesperidin from UV and NMR spectra. CONCLUSION: An appropriate strength of pulsed electric field-assisted alkali dissolution extraction followed by an acidification precipitation method can effectively improve the extraction rate of orange peel, and the purity of the extracted orange peel is higher. Compared with the traditional extraction, the pulsed electric field-assisted extraction method may be a potential technology for hesperidin extraction, which is beneficial for the high-value utilization of citrus resources. © 2024 Society of Chemical Industry.

5.
Food Res Int ; 180: 114032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395586

RESUMO

In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.


Assuntos
Poluição Ambiental , Alimento Funcional
6.
Ultrason Sonochem ; 104: 106824, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412679

RESUMO

Ultrasonication, a technology that employs high-frequency sound waves, has demonstrated potential for modifying the properties of various food items. However, the effect of ultrasonication on chicken meat, particularly concerning amino acid composition and flavor enhancement, has not been sufficiently investigated. The objective of this research was to bridge the gap in the literature by exploring the impact of various ultrasonic treatments at varying power levels (300, 500, and 800 W) and durations (10 and 30 min) on the physicochemical characteristics, texture, and amino acid profile of chicken breast meat, with a focus on improving its palatability and flavor. The results indicated that ultrasonication reduced the pH and cooking loss, as well as hardness and chewiness while simultaneously increasing lightness and yellowness values of chicken breast meat. Moreover, ultrasonication enhanced the amounts of essential amino acids, including glutamic acid, alanine, and glycine as well as the free amino acid content, which gives meat its savory and umami flavor. Furthermore, the results demonstrated significant changes in the texture and structure, as demonstrated by the scanning electron microscopy (SEM) images, and in chemical makeup of chicken breast meat, as indicated by the FTIR spectra. These modifications in the molecular and microstructural characteristics of meat, as induced by ultrasonication, may contribute to the enhancement of tenderness, juiciness, and overall palatability.


Assuntos
Aminoácidos , Galinhas , Animais , Carne/análise , Culinária , Som
7.
Int J Biol Macromol ; 261(Pt 1): 129695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280703

RESUMO

The study focused on the regulation of ovalbumin (OVA) allergenicity using pulsed electric field (PEF) technology and examined the structure-activity link. Following PEF treatment, the ability of OVA to bind to IgE and IgG1 at 6 kHz was inhibited by 30.41 %. According to the microstructure, PEF caused cracks on the OVA surface. Spectral analysis revealed a blue shift in the amide I band and a decrease in α-helix and ß-sheet content indicating that the structure of OVA was unfolded. The disulfide bond conformation was transformed and the structure tended to be disordered. The increased fluorescence intensity indicated that tryptophan and tyrosine were exposed which led an increase in hydrophobicity. In addition, the results of molecular dynamics (MD) simulations confirmed that the stability of OVA was reduced after PEF, which was related to the reduction of hydrogen bonding and the sharp fluctuation of aspartic acid. Therefore, PEF treatment induced the exposure of hydrophobic amino acids and the transformation of disulfide bond configuration which in turn masked or destroyed allergenic epitopes, and ultimately inhibited OVA allergenicity. This study provided insightful information for the production of hypoallergenic eggs and promoted the use of PEF techniques in the food field.


Assuntos
Alérgenos , Eletricidade , Ovalbumina/química , Alérgenos/química , Ovos , Dissulfetos
8.
Int J Biol Macromol ; 260(Pt 2): 129613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246440

RESUMO

The effects of pulsed electric field combined with ultrasound (PEF-US) on the recovery of polyphenols from litchi peels were investigated. In addition, the optimal purification parameters for polyphenol extracts and their biological activities were also explored in this study. Single-factor and orthogonal experiments were used to optimize the extraction conditions of polyphenols. After optimization, the total phenol content (TPC) of the sample extracted by PEF-US was 2.30 times higher than that of the sample extracted by traditional hot-water extraction. The mechanism of PEF-US enhancing polyphenol recovery was also revealed by morphological analysis of the powder surface. LX-7 was the best resin by comparing the purification effect of nine macroporous resins. The optimum conditions for purification of litchi peel polyphenols by LX-7 resin were also optimized through adsorption and desorption experiments. UHPLC-MS and HPLC results revealed that gentisic acid, catechin, procyanidin A2 and procyanidin B1 are four main substances in purified samples. The results of bioactivity experiments showed that the purified polyphenol samples had strong antioxidant and antibacterial activity. Overall, PEF-US is an efficient method for recovering polyphenols from litchi peels. Our study also provides a strategy for the comprehensive utilization of fruit processing waste.


Assuntos
Litchi , Polifenóis , Frutas/química , Extratos Vegetais , Antioxidantes/farmacologia
9.
Int J Biol Macromol ; 257(Pt 1): 128509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052285

RESUMO

Previous studies demonstrated that the non-thermal effects of pulsed electric fields can promote protein glycation below 40 °C, but it does not always enhance the emulsifying properties of proteins, such as in the bovine serum albumin/glucose model. Therefore, the aim of this study was to investigate the impact of non-thermal effects on the glucose glycation and emulsification properties of bovine serum albumin at 90 °C. The results of circular dichroism, surface hydrophobicity, and molecular dynamics simulations showed that the polarization effect increased the degree of glycation of bovine serum albumin-glucose conjugates from 12.82 % to 21.10 % by unfolding protein molecule, while the emulsifying stability index was increased from 79.17 to 100.73 compared with the control. Furthermore, the results of principal component analysis and Pearson correlation analysis indicated that the ionization effect and the free radicals generated by pulsed electric fields significantly (p < 0.05) inhibited browning and reduced free sulfhydryl content. This study demonstrated that pulsed electric fields combined with heating can prepare glycated proteins with good emulsifying properties in a short period of time and at temperatures lower than conventional heating while reducing energy consumption. This processing strategy has potential applications in improving the emulsifying performance of highly stable proteins.


Assuntos
Reação de Maillard , Soroalbumina Bovina , Temperatura , Glucose , Interações Hidrofóbicas e Hidrofílicas
10.
Foods ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002208

RESUMO

Novel hierarchical metal-organic framework/chitosan aerogel composites were developed for oil bleaching. UiO-66-COOH-type metal organic frameworks (Zr-MOFs) were synthesized and integrated onto a chitosan matrix with different contents and named MOF-aerogel-1 and MOF-aerogel-2. Due to the compatibility of chitosan, the carboxylic zirconium MOF-aerogels not only maintained the inherent chemical accessibility of UiO-66-COOH, but the unique crystallization and structural characteristics of these MOF nanoparticles were also preserved. Through 3-dimensional reconstructed images, aggregation of the UiO-66-COOH particles was observed in MOF-aerogel-1, while the MOF was homogeneously distributed on the surface of the chitosan lamellae in MOF-aerogel-2. All aerogels, with or without immobilized MOF nanoparticles, were capable of removing carotenoids during oil bleaching. MOF-aerogel-2 showed the most satisfying removal proportions of 26.6%, 36.5%, and 47.2% at 50 °C, 75 °C, and 100 °C, respectively, and its performance was very similar to that of commercial activated clay. The reuse performance of MOF-aerogel-2 was tested, and the results showed its exceptional sustainability for carotenoid removal. These findings suggested the effectiveness of the MOFaerogel for potential utilization in oil bleaching treatments.

11.
Foods ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002235

RESUMO

Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.

12.
Heliyon ; 9(9): e19583, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809817

RESUMO

The present study aimed to investigate the application of the ohmic heating (OH) technique in the production of date syrup from the date fruit of the Sukkary variety at different electric field strengths (EFS) (9, 10, and 11 V/cm). The results were compared to the conventional heating method (CH). The response surface methodology was used to optimize yield. The results showed that the time to reach the boiling point of dates and water mixture using OH was less than the CH by 80% for extracting and 900% for evaporation. In addition, the productivity of date syrup using OH at EFS of 11 V/cm was higher than the CH by 86.11%. There is no significant effect between OH at EFS of 11 V/cm and CH in moisture content, refractive index, density, TSS, and viscosity. The optimum level of EFS was 11.5 V/cm, which gave a higher yield (64.93%). OH, save consumed power and cost. The OH gave the highest scores of sensory characteristics compared to CH. Total sugars, monosaccharides, and ketone monosaccharides were detected in the date syrup, and the result was positive, while the quintuple sugars and multiple sugars were negative for all treatments. The OH reduced the cost by 85.78% compared with CH.

13.
Front Chem ; 11: 1248458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705997

RESUMO

Plumbagin (PLM), a plant derivative, is well known for a wide range of therapeutic effects in humans including anti-cancer, anti-inflammatory, anti-oxidant, and anti-microbial. Cytotoxic and genotoxic potential of this phytochemical has been studied which demands further insight. DNA being a major target for several drugs was taken to study against PLM to understand its effects on the cellular system. UV-Vis spectroscopy has indicated the binding of PLM to ctDNA and dye displacement assays have confirmed the formation of PLM-ctDNA complex. The insignificant changes in circular dichroism spectra suggested that PLM is not affecting the structural makeup of the ctDNA, hence the binding could be peripheral and not intercalating. Further, the relative viscosity and minimal change in melting temperature upon the complex formation supported this finding and confirmed the groove binding of PLM. Molecular docking analysis and simulation studies also show PLM as a minor groove binder to DNA and provide details on the interaction dynamics of PLM-DNA complex. Docking followed by a 100 ns simulation reveals the negative Gibbs free energy change (∆G = -6.6 kcal mol-1), and the formation of a stable complex. The PLM- DNA complex with stable dynamics was further supported by different parameters including RMSD, RMSF, SASA, Rg, and the energy profile of interaction. This study provides an insight into the cytotoxic and genotoxic mechanism of PLM which can be a crucial step forward to exploit its therapeutic potential against several diseases including cancer.

14.
Food Res Int ; 172: 113135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689899

RESUMO

The poor water solubility and rhein (RH) stability limit its application in the functional food industry. In the present study, the RH-loaded water-in-oil-in-water nano emulsion and microcapsules were prepared using the conjugates of pullulan-Jiuzao glutelin (JG) (m/m, 2:1, PJC-2) obtained by Maillard reaction and enteric-soluble materials (polymethlacrylic acid, hydroxypropyl methylcellulose phthalate, cellulose acetate phthalate, and D-mannitol). The effects of different formulations on the microstructure, physicochemical properties, and storage stability of microcapsules were analyzed. The results showed that microcapsules exhibited stability against different external environments. The encapsulation efficiency of RH in the four enteric-soluble-PJC-2 double-deck microcapsules (70.03 ± 3.24%-91.08 ± 4.78%) was significantly improved than PJC-2 ones (61.84 ± 0.47%). The antioxidant activity and stability of RH in the microcapsules were improved (ABTS, 49.7%-113.93%; DPPH, 40.85%-101.82%; FRA, 62.32%-126.42%; and FCA, 70.58%-147.20%) after in vitro simulated digestion and extreme environmental conditions compared to free RH. This work provides a microcapsule based on PJC-2 with enteric-soluble materials for insoluble functional ingredients to improve solubility, stability, and bioactivity in the food industry.


Assuntos
Glutens , Reação de Maillard , Cápsulas , Biopolímeros
15.
Food Funct ; 14(18): 8545-8557, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656435

RESUMO

A novel Chardonnay wine flavored with either green tea or black tea was subjected to bottle aging for 9 months, and the physicochemical properties, antioxidant capacity, total phenolic content, volatile content and sensory properties were monitored. There were 272 phenolic and non-phenolic compounds characterized in the aged Chardonnay wines, including newly formed 9, 1, 3 and 8 phenolic compounds and 10, 6, 1 and 6 non-phenolic compounds after aging for 1, 3, 6 and 9 months, respectively. For all the aged wines, catechin was determined as the most abundant phenolic compound, and epigallocatechin mainly contributed toward the antioxidant power. A total of 54 volatile compounds were identified in the aged Chardonnay wines, including 17 odor-active compounds. The aging process diminished floral and fruity odors, but intensified green odor. The consumer study revealed the highest consumer liking for 1% (w/v) black tea infused wine. This study revealed the quality and bioactivity of this novel flavored wine type during aging which is critical to understand the shelf-life and functionality of the product.


Assuntos
Camellia sinensis , Vinho , Antioxidantes , Fenóis , Chá
16.
Int J Biol Macromol ; 248: 125871, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473896

RESUMO

Microcapsules could improve the protection of probiotics in the lyophilization and gastrointestinal digestion process. The purpose of this study was to prepare Lactiplantibacillus plantarum DMDL 9010 (LP9010) microcapsules by cross-linking chitosan with genipin and to determine the encapsulation efficiency, morphological characterization, storage stability and the application of the microcapsules in fermentation. The results showed that the LP9010 microcapsules embedded in 1.00 wt% genipin cross-linked chitosan were in a uniform spherical shape with a smooth surface and satisfying agglomeration. The LP9010 microcapsules demonstrated the reasonable thermal stability and persistence of biological activity in the range of -20 °C to 25 °C. Additionally, yogurt obtained from the ST + LB + ELP9010 strain formulation with the addition of microencapsulated LP9010 had smaller particles, better taste, and better stability compared with the yogurt obtained from other strain formulations. As detected by GC-MS, the yogurt formulated with ST + LB + ELP9010 as a strain retained more flavor substances and the content of flavor substances was greater than that of the yogurt obtained from other strain formulations. Therefore, genipin cross-link chitosan could be a suitable microencapsulated material for producing yogurt fermentation strains.


Assuntos
Quitosana , Iogurte , Cápsulas , Fermentação
17.
Int J Biol Macromol ; 247: 125716, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37419258

RESUMO

In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.


Assuntos
Quitosana , Curcumina , Óxido de Zinco , Hidrogéis , Carboximetilcelulose Sódica , Liberação Controlada de Fármacos , Microesferas , Portadores de Fármacos , Concentração de Íons de Hidrogênio
18.
Ultrason Sonochem ; 97: 106461, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269690

RESUMO

The purpose of this study was to examine plasma-activated buffer solution (PABS) and plasma-activated water (PAW) combined with ultrasonication (U) treatment on the reduction of chlorothalonil fungicide and the quality of tomato fruits during storage. To obtain PAW and PABS, an atmospheric air plasma jet was used to treat buffer solution and deionized water at different treatment times (5 and 10 min). For combined treatments, fruits were submerged in PAW and PABS, then sonicated for 15 min, and individual treatment without sonication. As per the results, the maximum chlorothalonil reduction of 89.29% was detected in PAW-U10, followed by 85.43% in PABS. At the end of the storage period, the maximum reduction of 97.25% was recorded in PAW-U10, followed by 93.14% in PABS-U10. PAW, PABS, and both combined with ultrasound did not significantly affect the overall tomato fruit quality in the storage period. Our results revealed that PAW combined with sonication had a significant impact on post-harvest agrochemical degradation and retention of tomato quality than PABS. Conclusively, the integrated hurdle technologies effectively reduce agrochemical residues, which helps to lower health hazards and foodborne illnesses.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Água/química , Nitrilas
19.
Foods ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372628

RESUMO

The valorization of industrial fruit and vegetable waste has gained significant attention due to the environmental concerns and economic opportunities associated with its effective utilization. This review article comprehensively discusses the application of subcritical and supercritical fluid technologies in the valorization process, highlighting the potential benefits of these advanced extraction techniques for the recovery of bioactive compounds and unconventional oils from waste materials. Novel pressurized fluid extraction techniques offer significant advantages over conventional methods, enabling effective and sustainable processes that contribute to greener production in the global manufacturing sector. Recovered bio-extract compounds can be used to uplift the nutritional profile of other food products and determine their application in the food, pharmaceutical, and nutraceutical industries. Valorization processes also play an important role in coping with the increasing demand for bioactive compounds and natural substitutes. Moreover, the integration of spent material in biorefinery and biorefining processes is also explored in terms of energy generation, such as biofuels or electricity, thus showcasing the potential for a circular economy approach in the management of waste streams. An economic evaluation is presented, detailing the cost analysis and potential barriers in the implementation of these valorization strategies. The article emphasizes the importance of fostering collaboration between academia, industry, and policymakers to enable the widespread adoption of these promising technologies. This, in turn, will contribute to a more sustainable and circular economy, maximizing the potential of fruit and vegetable waste as a source of valuable products.

20.
Int J Biol Macromol ; 244: 125082, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37257538

RESUMO

Understanding molecular mechanisms during protein modification is critical for expanding the application of plant proteins. This study investigated the conformational change and molecular mechanism of pea protein isolate (PPI) under pulsed electric field (PEF)-assisted (-)-Epigallocatechin-Gallate (EGCG) modification. The flexibility of PPI was significantly enhanced after PEF treatment (10 kV/cm) with decrease (23.25 %) in α-helix and increase (117.25 %) in random coil. The binding constant and sites of PEF-treated PPI with EGCG were increased by 2.35 times and 10.00 % (308 K), respectively. Molecular docking verified that PEF-treated PPI had more binding sites with EGCG (from 4 to 10). The number of amino acid residues involved in hydrophobic interactions in PEF-treated PPI-EGCG increased from 5 to 13. PEF-treated PPI-EGCG showed a significantly increased antioxidant activity compared to non-PEF-treated group. This work revealed the molecular level of PEF-assisted EGCG modification of PPI, which will be significant for the application of PPI in food industry.


Assuntos
Proteínas de Ervilha , Simulação por Computador , Simulação de Acoplamento Molecular , Análise Espectral , Antioxidantes/farmacologia , Antioxidantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA