Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Plant Cell ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691576

RESUMO

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.

2.
J Control Release ; 370: 405-420, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663753

RESUMO

Remodeling retinal Müller glial fate, including gliosis inhibition and pro-reprogramming, represents a crucial avenue for treating degenerative retinal diseases. Stem cell transplantation exerts effects on modulating retinal Müller glial fate. However, the optimized stem cell products and the underlying therapeutic mechanisms need to be investigated. In the present study, we found that retinal progenitor cells from human embryonic stem cell-derived retinal organoids (hERO-RPCs) transferred extracellular vesicles (EVs) into Müller cells following subretinal transplantation into RCS rats. Small EVs from hERO-RPCs (hERO-RPC-sEVs) were collected and were found to delay photoreceptor degeneration and protect retinal function in RCS rats. hERO-RPC-sEVs were taken up by Müller cells both in vivo and in vitro, and inhibited gliosis while promoting early dedifferentiation of Müller cells. We further explored the miRNA profiles of hERO-RPC-sEVs, which suggested a functional signature associated with neuroprotection and development, as well as the regulation of stem cell and glial fate. Mechanistically, hERO-RPC-sEVs might regulate the fate of Müller cells by miRNA-mediated nuclear factor I transcription factors B (NFIB) downregulation. Collectively, our findings offer novel mechanistic insights into stem cell therapy and promote the development of EV-centered therapeutic strategies.

3.
Small ; : e2309412, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342678

RESUMO

Ammonium vanadates, featuring an N─H···O hydrogen bond network structure between NH4 + and V─O layers, have become popular cathode materials for aqueous zinc-ion batteries (AZIBs). Their appeal lies in their multi-electron transfer, high specific capacity, and facile synthesis. However, a major drawback arises as Zn2+ ions tend to form bonds with electronegative oxygen atoms between V─O layers during cycling, leading to irreversible structural collapse. Herein, Li+ pre-insertion into the intermediate layer of NH4 V4 O10 is proposed to enhance the electrochemical activity of ammonium vanadate cathodes for AZIBs, which extends the interlayer distance of NH4 V4 O10 to 9.8 Å and offers large interlaminar channels for Zn2+ (de)intercalation. Moreover, Li+ intercalation weakens the crystallinity, transforms the micromorphology from non-nanostructured strips to ultrathin nanosheets, and increases the level of oxygen defects, thus exposing more active sites for ion and electron transport, facilitating electrolyte penetration, and improving electrochemical kinetics of electrode. In addition, the introduction of Li+ significantly reduces the bandgap by 0.18 eV, enhancing electron transfer in redox reactions. Leveraging these unique advantages, the Li+ pre-intercalated NH4 V4 O10 cathode exhibits a high reversible capacity of 486.1 mAh g-1 at 0.5 A g-1 and an impressive capacity retention rate of 72% after 5,000 cycles at 5 A g-1 .

4.
Stem Cell Res Ther ; 15(1): 54, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414051

RESUMO

BACKGROUND: Unlike in lower vertebrates, Müller glia (MG) in adult mammalian retinas lack the ability to reprogram into neurons after retinal injury or degeneration and exhibit reactive gliosis instead. Whether a transition in MG cell fate from gliosis to reprogramming would help preserve photoreceptors is still under exploration. METHODS: A mouse model of retinitis pigmentosa (RP) was established using MG cell lineage tracing mice by intraperitoneal injection of sodium iodate (SI). The critical time point for the fate determination of MG gliosis was determined through immunohistochemical staining methods. Then, bulk-RNA and single-cell RNA seq techniques were used to elucidate the changes in RNA transcription of the retina and MG at that time point, and new genes that may determine the fate transition of MG were screened. Finally, the selected gene was specifically overexpressed in MG cells through adeno-associated viruses (AAV) in the mouse RP model. Bulk-RNA seq technique, immunohistochemical staining methods, and visual function testing were used to elucidate and validate the mechanism of new genes function on MG cell fate transition and retinal function. RESULTS: Here, we found the critical time point for MG gliosis fate determination was 3 days post SI injection. Hmga2 was screened out as a candidate regulator for the cell fate transition of MG. After retinal injury caused by SI, the Hmga2 protein is temporarily and lowly expressed in MG cells. Overexpression of Hmga2 in MG down-regulated glial cell related genes and up-regulated photoreceptor related genes. Besides, overexpressing Hmga2 exclusively to MG reduced MG gliosis, made MG obtain cone's marker, and retained visual function in mice with acute retinal injury. CONCLUSION: Our results suggested the unique reprogramming properties of Hmga2 in regulating the fate transition of MG and neuroprotective effects on the retina with acute injury. This work uncovers the reprogramming ability of epigenetic factors in MG.


Assuntos
Células Ependimogliais , Retinose Pigmentar , Animais , Camundongos , Células Ependimogliais/metabolismo , Gliose/metabolismo , Proteína HMGA2/metabolismo , Retina/metabolismo , Retinose Pigmentar/metabolismo , Modelos Animais de Doenças , RNA/metabolismo , Neuroglia/metabolismo , Mamíferos
5.
J Extracell Vesicles ; 13(1): e12401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151470

RESUMO

Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid ß-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.


Assuntos
Vesículas Extracelulares , Células-Tronco Embrionárias Humanas , Humanos , Epitélio Pigmentado da Retina/metabolismo , Proteômica , Ácido Oleico/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Organoides/metabolismo , Metabolismo dos Lipídeos
6.
J Interferon Cytokine Res ; 43(10): 445-454, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819621

RESUMO

Some progress has been made in immunotherapy with chimeric antigen receptor (CAR)-T cells targeting NKG2D-NKG2DL with the purpose of eradicating solid tumors. Non-small cell lung cancer (NSCLC) has been shown to express NKG2DL. This study hence evaluated the therapeutic effect of NKG2D CAR-T cells on NSCLC. Accordingly, NKG2D CAR-T cells were obtained from diverse human autologous T cell sources. T cells from peripheral blood T lymphocytes of healthy volunteers (without NKG2D CAR insertion) were used as NT-T cells. Coculture of effector cells (CAR-T cells or NT-T cells) with target cells (NSCLC cells such as PC-9 or NCL-H460 cells) was performed at different ratios. The cytotoxicity of CAR-T cells was examined using lactate dehydrogenase assay kits. Murine xenograft assay was conducted to investigate the in vivo antitumor effect of CAR-T cells. Cytokines secreted from CAR-T cells were assessed by enzyme-linked immunosorbent assay. CAR-T cell infiltration into xenografts was observed through immunochemical assay. Based on the results, NKG2DL was highly expressed in NSCLC cells. Compared with NT-T cells, NKG2D CAR-T cells from different sources of T cells delivered stronger toxicity, and secreted more effector and memory function-related cytokines to NSCLC cells, and those from the peripheral blood of healthy donors (H-T cells) exhibited the strongest effect. Furthermore, compared with NT-T cells, H-T cells and NKG2D CAR-T cells from NSCLC patients' peripheral blood diminished tumor, improved survival, increased body weight and tumor-infiltrating capacity, and upregulated serum IFN-γ level in NOG mice. Collectively speaking, NKG2D CAR-T cells exhibit a robust effect on eradicating NSCLC in a NKG2DL-dependent manner, thus making themselves a promising therapeutic candidate for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Linfócitos T , Carcinoma Pulmonar de Células não Pequenas/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Imunoterapia Adotiva , Neoplasias Pulmonares/terapia , Citocinas , Linhagem Celular Tumoral
7.
Lab Chip ; 23(17): 3820-3836, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37496497

RESUMO

Retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) have become a promising model in vitro to recapitulate human retinal development, which can be further employed to explore the mechanisms of retinal diseases. However, the current culture systems for ROs lack physiologically relevant microenvironments, such as controllable mechano-physiological cues and dynamic feedback between cells and the extracellular matrix (ECM), which limits the accurate control of RO development. Therefore, we designed a controllable perfusion microfluidic chip (CPMC) with the advantages of precisely controlling fluidic shear stress (FSS) and oxygen concentration distribution in a human embryonic stem cell (hESC)-derived RO culture system. We found that ROs cultured under this system allow for expanding the retinal progenitor cell (RPC) pool, orchestrating the retinal ganglion cell (RGC) specification, and axon growth without disturbing the spatial and temporal patterning events at the early stage of RO development. Furthermore, RNA sequencing data revealed that the activation of voltage-gated ion channels and the increased expression of ECM components synergistically improve the growth of ROs and facilitate the differentiation of RGCs. This study elaborates on the advantages of the designed CPMC to promote RO growth and provide a controllable and reliable platform for the efficient maturity of RGCs in the ROs, promising applications in modeling RGC-related disorders, drug screening, and cell transplantation.


Assuntos
Microfluídica , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular , Organoides , Perfusão
8.
J Speech Lang Hear Res ; 66(7): 2490-2502, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37267442

RESUMO

PURPOSE: The effect of hearing aids (HAs) and educational counseling (EC) or their combination on tinnitus is ambiguous. This study aimed to investigate whether the combined use of HAs and EC is more effective than EC alone on tinnitus relief. METHOD: A total of 72 adults with chronic, bothersome tinnitus and coexisting sensorineural hearing loss completed at least 1-month and 3-month follow-up. After receiving EC and HA prescriptions, 21 participants selected to purchase HAs (i.e., the HA + EC group), whereas the remaining 51 refused to use HAs despite recommendations (i.e., the EC group). Tinnitus severity was measured by Tinnitus Handicap Inventory (THI), Tinnitus Evaluation Questionnaire (TEQ), and Visual Analog Scale (VAS) for loudness. The primary outcome measure was THI, and tinnitus relief was defined as a 20-point or more reduction in THI. A generalized linear mixed model was used to confirm that the heterogeneity in baseline characteristics between groups did not interfere with the results. RESULTS: The THI, TEQ, and VAS scores decreased significantly after treatments, and both groups yielded a similar trend of reduction. There were no significant differences in the incidence of tinnitus relief and time-to-event curves between the two groups. In addition, the length of follow-up did not affect treatment effectiveness. CONCLUSION: There was insufficient evidence to support the superiority of the combined use of HA and EC for tinnitus over EC with no device.


Assuntos
Surdez , Auxiliares de Audição , Perda Auditiva , Zumbido , Adulto , Humanos , Seguimentos , Zumbido/complicações , Zumbido/terapia , Perda Auditiva/complicações , Surdez/complicações , Aconselhamento , Resultado do Tratamento
9.
Int J Biol Macromol ; 242(Pt 3): 124981, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236572

RESUMO

The fall armyworm, Spodoptera frugiperda (J. E. Smith), has become one of the most damaging pests worldwide since its invasion of Africa, Asia and Oceania from 2016, threatening plants in 76 families including important crops. Genetics-based methods have proved to be an efficient way to control pests, especially invasive species, but many difficulties must be overcome to develop a transgenic insect strain, especially for a non-model species. Here we thus sought to identify a visible marker that would facilitate the distinction between genetically modified (GM) and non-transgenic insects, thereby simplifying mutation identification and facilitating the broader application of genome editing tools in non-model insects. Five genes (sfyellow-y, sfebony, sflaccase2, sfscarlet, and sfok) that are orthologs of well-studied genes in pigment metabolism were knocked out using the CRISPR/Cas9 system to identify candidate gene markers. Two genes, Sfebony and Sfscarlet, were identified responsible for body and compound eye coloration, respectively, in S. frugiperda, and could be potential visual markers for genetics-based pest management strategies.


Assuntos
Mariposas , Humanos , Animais , Spodoptera/genética , Pigmentação/genética , Produtos Agrícolas , Zea mays , Larva
10.
Theranostics ; 13(5): 1698-1715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056562

RESUMO

Rationale: Müller glia (MG) play a key role in maintaining homeostasis of the retinal microenvironment. In zebrafish, MG reprogram into retinal progenitors and repair the injured retina, while this MG regenerative capability is suppressed in mammals. It has been revealed that microglia in zebrafish contribute to MG reprogramming, whereas those in mammals are over-activated during retinal injury or degeneration, causing chronic inflammation, acceleration of photoreceptor apoptosis, and gliosis of MG. Therefore, how to modulate the phenotype of microglia to enhance MG reprogramming rather than gliosis is critical. Methods: PLX3397, a colony-stimulating factor 1 receptor inhibitor, was applied to deplete microglia in the retinas of retinal degeneration 10 (rd10) mice, and withdrawal of PLX3397 was used to induce the repopulated microglia (Rep-MiG). The protective roles of the Rep-MiG on the degenerative retina were assessed using a light/dark transition test, and scotopic electroretinogram recordings. Immunofluorescence, western blot, transcriptomic sequencing, and bioinformatics analysis were performed to investigate the effects and mechanisms of microglia on MG reprogramming. Results: Following PLX3397 withdrawal, Rep-MiG replenished the entire retina with a ramified morphology and significantly improved the retinal outer nuclear layer structure, the electroretinography response, and the visual behavior of rd10 mice. Coincidentally, MG were activated, de-differentiated, and showed properties of retina progenitors in a spatial correlation with Rep-MiG. Morphological and transcriptomic analyses revealed Rep-MiG significantly enhanced protease inhibitor activity and suppressed extracellular matrix (ECM) levels during retinal degeneration. Conclusions: It suggested that Rep-MiG with the homeostasis characteristic stimulated the progenitor cell-like properties of MG, probably through regulating ECM remodeling, which protected photoreceptors and improved visual function of rd10 mice. It might be a potential protocol to reprogram MG and delay mammal retinal degeneration.


Assuntos
Microglia , Degeneração Retiniana , Animais , Camundongos , Peixe-Zebra , Gliose , Neuroglia , Mamíferos
11.
Int J Ophthalmol ; 16(4): 483-498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077494

RESUMO

AIM: To explore whether the subretinal transplantation of retinal progenitor cells from human embryonic stem cell-derived retinal organoid (hERO-RPCs) could promote Müller glia dedifferentiation and transdifferentiation, thus improving visual function and delaying retinal degenerative progression. METHODS: hERO-RPCs were subretinally transplanted into Royal College of Surgeons (RCS) rats. Electroretinography (ERG) recording was performed at 4 and 8wk postoperation to assess retinal function. Using immunofluorescence, the changes in outer nuclear layer (ONL) thickness and retinal Müller glia were explored at 2, 4, and 8wk postoperation. To verify the effect of hERO-RPCs on Müller glia in vitro, we cocultured hERO-RPCs with Müller glia with a Transwell system. After coculture, Ki67 staining and quantitative polymerase chain reaction (qPCR) were performed to measure the proliferation and mRNA levels of Müller glia respectively. Cell migration experiment was used to detect the effect of hERO-RPCs on Müller glial migration. Comparisons between two groups were performed by the unpaired Student's t-test, and comparisons among multiple groups were made with one-way ANOVA followed by Tukey's multiple comparison test. RESULTS: The visual function and ONL thickness of RCS rats were significantly improved by transplantation of hERO-RPCs at 4 and 8wk postoperation. In addition to inhibiting gliosis at 4 and 8wk postoperation, hERO-RPCs significantly increased the expression of dedifferentiation-associated transcriptional factor in Müller glia and promoted the migration at 2, 4 and 8wk postoperation, but not the transdifferentiation of these cells in RCS rats. In vitro, using the Transwell system, we found that hERO-RPCs promoted the proliferation and migration of primary rat Müller glia and induced their dedifferentiation at the mRNA level. CONCLUSION: These results show that hERO-RPCs might promote early dedifferentiation of Müller glia, which may provide novel insights into the mechanisms of stem cell therapy and Müller glial reprogramming, contributing to the development of novel therapies for retinal degeneration disorders.

12.
Cell Biol Toxicol ; 39(3): 1015-1035, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34648132

RESUMO

Doxorubicin (DOX) has toxic effects on the heart, causing cardiomyopathy and heart injury, but the underlying mechanisms of these effects require further investigation. This study investigated the role of DOX in promoting ferroptosis to induce myocardial injury. AC16 cardiomyocyte and neonatal rat ventricle cardiomyocytes were used as an in vitro model to study the molecules involved in myocardial injury using gene silencing, ectopic expression, and RNA immunoprecipitation. Messenger RNA and protein level analyses showed that DOX treatment resulted in the upregulation of methyltransferase-like 14 (METTL14), which catalyzes the m6A modification of the long non-coding RNA KCNQ1OT1, a miR-7-5p sponge. The RNA-binding protein IGF2BP1 is associated with KCNQ1OT1 to increase its stability and robustly inhibit miR-7-5p activity. Furthermore, a lack of miR-7-5p expression led to increased levels of transferrin receptor, promoting the uptake of iron and production of lipid reactive oxygen species and demonstrating that DOX-induced ferroptosis occurs in AC16 cells. Additionally, we found that miR-7-5p targets METTL14 in AC16 cells. Meanwhile, the role of METTL14/KCNQ1OT1/miR-7-5p axis in regulating ferroptosis in neonatal rat ventricle cardiomyocytes was also confirmed. Our results indicate that selectively inhibiting ferroptosis mediated by a METTL14/KCNQ1OT1/miR-7-5p positive feedback loop in cardiomyocytes could provide a new therapeutic approach to control DOX-induced cardiac injury.


Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doxorrubicina/farmacologia , Receptores da Transferrina/metabolismo , RNA Longo não Codificante/genética
15.
RSC Adv ; 12(38): 24930-24934, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36199883

RESUMO

The palladium-catalyzed oxidative C-H olefinations of uridine, deoxyuridine, uridine monophosphate and uridine analogues are reported herein. This protocol provides an efficient, atom-economic and environmentally friendly approach to the synthesis of biologically important C5-alkene modified uracil/uridine-containing derivatives and pharmaceutical candidates.

16.
Environ Int ; 163: 107187, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313214

RESUMO

Increasing evidence in animal models has suggested that polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, can cause retinotoxicity. However, data on the influence of PBDE treatment on human retinal development are scarce due to the lack of appropriate models. In the present study, we report the utilization of human embryonic stem cell-derived retinal organoids (hESC-ROs) for toxicity assessment of the most common PBDE congener (BDE-47) during the early stages of retinal development. Exposure to BDE-47 decreased the thickness and area of the neural retina (NR) of hESC-ROs in a dose- and time-dependent manner. Abnormal retinal cell distributions, disordered NR structures, and neural rosette-like structures were found on hESC-ROs after low-level BDE-47 exposure. Moreover, BDE-47 exposure decreased cell proliferation, promoted cell apoptosis, and caused abnormal differentiation. Transcriptomic analysis demonstrated that differentially expressed genes, caused by BDE-47, were enriched in extracellular matrix organization. Metabolomic studies of hESC-ROs revealed significant changes in the metabolism of purine and glutathione after BDE-47 exposure for five weeks. This study clarifies the retinotoxicity of low-level BDE-47 treatment and highlights the powerfulness of the hESC-RO model, deepening our understanding of BDE-47-driven human early retina developmental toxicity.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Animais , Apoptose , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Humanos , Espécies Reativas de Oxigênio/metabolismo , Retina/química , Retina/metabolismo
17.
Front Cell Dev Biol ; 10: 801302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223834

RESUMO

Radiation retinopathy (RR) is a common complication following radiation therapy of globe, head, and neck malignancies, and is characterized by microangiopathy, neuroretinopathy, and the irreversible loss of visual function. To date, there is no effective treatment for RR. Stem cells have been clinically used to treat retinal degeneration. CD133+CD34+ cells from human umbilical cord blood (hUCB-CD133+CD34+ cells), a subpopulation of hematopoietic stem cells, were applied to determine their protective efficacy on irradiated rat retinas. After X-ray irradiation on the retinas, rats were intravitreally injected with hUCB-CD133+CD34+ cells. Transplantation of hUCB-CD133+CD34+ cells prevented retinal dysfunction 2 weeks post-operation and lasted at least 8 weeks. CD133+CD34+ cells were distributed along the retinal vessel and migrated to the ganglion cell layer. Moreover, grafted CD133+CD34+ cells reduced the apoptosis of endothelial and ganglion cells in irradiated rats and increased the number of survived CD31+ retinal endothelial cells and Brn3a+ ganglion cells at 2 and 4 weeks, respectively, post-operation. Co-culturing of CD133+CD34+ cells or supernatants with irradiated human retinal microvascular endothelial cells (hRECs) in vitro, confirmed that CD133+CD34+ cells ameliorated hREC apoptosis caused by irradiation. Mechanistically, we found that angioprotective mediators and neurotrophic factors were secreted by CD133+CD34+ cells, which might attenuate irradiation-induced injury of retinal endothelial cells and ganglion cells. hUCB-CD133+CD34+ cell transplantation, as a novel treatment, protects retinal endothelial and ganglion cells of X-irradiated rat retinas, possibly through angioprotective and neurotrophic factors.

18.
Tissue Cell ; 74: 101674, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34814054

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a clonal malignant disease. Isocitrate Dehydrogenase 1-R123 (IDH1-R132 H) is related to T-ALL progression. This study explored the role of IDH1-R132H in T-ALL. Molt-4 cells with IDH1-R132H mutation were constructed by retroviral transfection of IDH1-R132H and T-ALL xenotransplantation mouse model was established by injection of Molt-4 cells through the tail vein. Infiltration of the liver, spleen, and bone marrow and the percentage of CD45-positive T-ALL cells in them were detected. Cell proliferation, apoptosis, and invasion were evaluated after the intervention of Notch1, PTEN, or PI3K expression. The leukocyte number was increased, the spleen was enlarged, infiltration in bone marrow, spleen, and liver tissue was worsened and the percentage of hCD45-positive T-ALL cells was increased by IDH1-R132H mutation, which promoted T-ALL deterioration. IDH1-R132H mutation promoted proliferation, invasion, and inhibited apoptosis of T-ALL cells, which were reversed by inhibition of Notch1. IDH1-R132H mutation upregulated HES1 expression and downregulated PTEN expression by activating the Notch1 pathway, while inhibition of Notch1 reversed these changes. PTEN inhibited the PI3K/AKT pathway activation. PTEN overexpression reversed IDH1-R132H mutation effect on promoting malignant behaviors of T-ALL cells. IDH1-R132H mutation inhibited PTEN expression by activating the Notch1/HES1 pathway, activated the PI3K/AKT pathway, thus promoting malignant behaviors of T-ALL cells.


Assuntos
Isocitrato Desidrogenase , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch1 , Transdução de Sinais/genética , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
19.
J Clin Gastroenterol ; 56(10): 875-880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34907924

RESUMO

BACKGROUND: To treat severe chronic constipation, both electroacupuncture (EA) therapy and transcutaneous electrical stimulation (TES) are safe and effective, but there is a lack of comparison between the 2 treatments. We sought to compare the therapeutic effect of EA relative to TES for the treatment of severe chronic constipation. METHODS: We conducted a pilot randomized controlled trial. Seventy participants with severe chronic constipation were randomly allocated to the EA group or TES group. The acupoints in both groups are bilateral Tianshu (stomach 25), Fujie (spleen 14), and Shangjuxu (stomach 37). Each participant received 24 sessions of EA or TES during the treatment period of 8 weeks. Outcome measures were the proportion of participants with an increase from baseline of 1 or more complete spontaneous bowel movements (CSBMs) at week 8 and changes in the number of CSBMs and spontaneous bowel movements, stool character, difficulty in defecation, Patient Assessment of Constipation Quality of Life (PAC-QOL); the proportion of participants using rescue medicine and adverse reactions. Participants were followed for 24 weeks after the treatment. RESULTS: Sixty of the 70 eligible participants completed the whole trial, 32 participants (91.43%) in the EA group and 28 participants (80.00%) in the TES group. There were 10 participants (14.29%) who dropped out during the whole study, 3 (8.57%) in the EA group, and 7 (20.00%) in the TES group. At weeks 20 and 32, 22 of 32 (68.75%) and 19 of 32 (59.38%) in the EA group met the clinical outcome of an increase of 1 or more CSBMs from the baseline, compared with 10 of 28 (35.71%) and 9 of 28 (32.14%) in the TES group ( P =0.019 and 0.042, respectively). At the same time, the proportions of participants having 3 or more CSBMs per week were 18 of 32 (56.25%) and 15 of 32 (46.88%) in the EA group, respectively, compared with 6 of 28 (21.43%) and 5 of 28 (17.86%) in the TES group ( P =0.008 and 0.027, respectively). Statistical differences between the 2 groups were maintained in the change from baseline in CSBMs during the follow-up period ( P =0.007 and 0.013, at week 20 and 32, respectively) and in the change from baseline in spontaneous bowel movements at week 20 ( P =0.007). Statistical significance was also observed in the decrease of PAC-QOL score after 8 weeks of treatment (mean±SD, EA: 19.06±14.41 vs. TES: 12.48±9.13, P =0.031). No significant difference was noted between the 2 groups in defecation difficulty, stool character, and the use of rescue medicine. CONCLUSIONS: For the treatment of severe chronic constipation, EA performed better than TES in long-term follow-up and improving the quality of life. TES could be a better choice for patients with severe chronic constipation who are afraid of acupuncture because it is noninvasive. Well-designed and more rigorous clinical trials with larger sample sizes are needed.


Assuntos
Eletroacupuntura , Estimulação Elétrica Nervosa Transcutânea , Constipação Intestinal/etiologia , Constipação Intestinal/terapia , Eletroacupuntura/efeitos adversos , Humanos , Projetos Piloto , Qualidade de Vida , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos , Resultado do Tratamento
20.
Front Pharmacol ; 12: 748956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912217

RESUMO

Retinal degeneration is a leading cause of irreversible vision impairment and blindness worldwide. Previous studies indicate that subretinal injection of human retinal progenitor cells (hRPCs) can delay the progression of retinal degeneration, preserve retinal function, and protect photoreceptor cells from death, albeit the mechanism is not well understood. In this study, small extracellular vesicles derived from hRPCs (hRPC-sEVs) were injected into the subretinal space of retinal dystrophic RCS rats. We find that hRPC-sEVs significantly preserve the function of retina and thickness of the outer nuclear layer (ONL), reduce the apoptosis of photoreceptors in the ONL, and suppress the inflammatory response in the retina of RCS rats. In vitro, we have shown that hRPC-sEV treatment could significantly reserve the low-glucose preconditioned apoptosis of photoreceptors and reduce the expression of pro-inflammatory cytokines in microglia. Pathway analysis predicted the target genes of hRPC-sEV microRNAs involved in inflammation related biological processes and significantly enriched in processes autophagy, signal release, regulation of neuron death, and cell cycle. Collectively, our study suggests that hRPC-sEVs might be a favorable agent to delay retinal degeneration and highlights as a new paradigm for cell-free therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA