Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Ophthalmol ; 24(1): 198, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671381

RESUMO

BACKGROUND: Postoperative performance, including best corrected distance visual acuity (BCDVA) and optical metrics (from the OQAS and iTrace devices), was compared among 4 different intraocular lenses (IOLs). METHODS: This prospective observational study included 104 eyes from 104 subjects who underwent cataract surgery combined with implantation of 4 different IOLs: monofocal (Mon) IOLs, segmental refractive (SegRef) IOLs, diffractive (Dif) IOLs and extended depth of focus (EDoF) IOLs. Postoperative BCDVA and optical metrics were collected at the 6th month. The OQAS optical metrics included the objective scattering index (OSI), Strehl ratio (SR), modulation transfer function (MTF) cut-off frequency, and predicted visual acuity (PVA); the iTrace optical metrics included blur/double vision, glare/halo, starburst, mixed focus, night myopia, and night hyperopia. RESULTS: There was no significant difference in BCDVA among the 4 groups (P = 0.059; power = 70.3%). Differences were observed in all OQAS optical metrics among the groups (all P < 0.001). Overall, Mon IOLs and EDoF IOLs exhibited better performance than Dif IOLs and SegRef IOLs. Starburst was the only iTrace optical metric that differed among the groups (P < 0.001): SegRef IOLs caused more starbursts than Mon IOLs (P = 0.001), Dif IOLs (P = 0.006) and EDoF IOLs (P < 0.001). Spearman rank correlation analysis was used to determine the relationships among the iTrace optical metrics, OQAS optical metrics and BCDVA: starburst was negatively correlated with BCDVA, PVA at contrasts of 100% and 20%, OSI, and MTF cut-off frequency (all P ≤ 0.001); mixed focus was positively correlated with BCDVA, PVA at contrasts of 100% and 20%, OSI, and MTF cut-off frequency (all P ≤ 0.001). CONCLUSIONS: Postoperative BCDVA and optical metrics varied among the different IOLs, which should be taken into account in the selection and management of IOLs for cataract patients. TRIAL REGISTRATION: This study was approved by the First Affiliated Hospital of Guangzhou Medical University Ethical Review Board (No. 50 2022).


Assuntos
Lentes Intraoculares , Acuidade Visual , Humanos , Estudos Prospectivos , Acuidade Visual/fisiologia , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Facoemulsificação , Refração Ocular/fisiologia , Implante de Lente Intraocular , Desenho de Prótese , Período Pós-Operatório , Pseudofacia/fisiopatologia , Óptica e Fotônica
2.
Phytomedicine ; 127: 155392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412575

RESUMO

BACKGROUND: Tiliroside (TIL) is a flavonoid compound that exists in a variety of edible plants. These dietary plants are widely used as food and medicine to treat various diseases. However, the effect of TIL on pancreatic cancer (PC) and its underlying mechanisms are unclear. PURPOSE: This study aims to reveal the anti-PC effect of TIL and clarify its mechanism. METHODS: The inhibitory effects of TIL on PC growth were studied both in vitro and in vivo. Flow cytometry, transmission electron microscopy, immunofluorescence, biochemical analyses, RT-qPCR, genetic ablation, and western blotting were employed to evaluate ferroptosis, autophagy, and iron regulation. Additionally, RNA sequencing (RNA-seq), biomolecular layer interferometry (BLI), and molecular simulation analysis were combined to identify TIL molecular targets. The clinicopathological significance of Calpain-2 (CAPN2) was determined through immunohistochemistry (IHC) on a PC tissue microarray. RESULTS: Herein, we showed that TIL was an effective anti-PC drug. CAPN2 was involved in the TIL - induced elevation of the labile iron pool (LIP) in PC cells. TIL directly bound to and inhibited CAPN2 activity, resulting in AKT deactivation and decreased expression of glucose transporters (GLUT1 and GLUT3) in PC cells. Consequently, TIL impaired ATP and NADPH generation, inducing autophagy and ROS production. The accumulation of TIL-induced ROS combined with LIP iron causes the Fenton reaction, leading to lipid peroxidation. Meanwhile, TIL-induced reduction of free iron ions promoted autophagic degradation of ferritin to regulate cellular iron homeostasis, which further exacerbated the death of PC cells by ferroptosis. As an extension of these in vitro findings, our murine xenograft study showed that TIL inhibited the growth of PANC-1 cells. Additionally, we showed that CAPN2 expression levels were related to clinical prognoses in PC patients. CONCLUSION: We identify TIL as a potent bioactive inhibitor of CAPN2 and an anti-PC candidate of natural origin. These findings also highlight CAPN2 as a potential target for PC treatment.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Calpaína/genética , Calpaína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Flavonoides/farmacologia , Neoplasias Pancreáticas/patologia , Ferro/metabolismo , Homeostase
3.
Heliyon ; 9(12): e22852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125520

RESUMO

Science popularization is not only a prerequisite for national development, but also an effective means of enhancing citizens' personal quality. All sectors of society, represented by colleges and universities, bear the responsibility of promoting popular science. The integration of popular science and tourism in popular science tourism serves to advance both the field of popular science and the tourism industry simultaneously. The Guangzhou Higher Education Mega Center (HEMC) possesses abundant resources for science popularization and has the potential to develop popular science tourism, yet its current development in this area remains insufficient. This study utilizes Guangzhou HEMC as a case study and modifies the American Customer Satisfaction Index model by incorporating relevant questions pertaining to popular science tourism. A total of 280 valid questionnaires were collected through surveying, which were then analyzed to measure tourist satisfaction using the Tourist Satisfaction Index. The partial least squares structural equation model was employed for analysis, and on the basis of calculation results, the IPA map was constructed. The research revealed that tourists' satisfaction with popular science tourism at Guangzhou HEMC was suboptimal. Among the factors correlating to satisfaction, expectations, quality, and price are all important factors to consider when making a purchase decision; however, prioritizing expectations and quality can lead to greater satisfaction in the long run. Therefore, there is still ample room for improvement in the popular science tourism of HEMC Guangzhou. This can be achieved by intensifying publicity efforts, enhancing infrastructure, improving the quality and safety of catering services, strengthening the introduction and construction of popular science content, as well as appropriately reducing the price of popular science products and services.

4.
Front Plant Sci ; 14: 1271357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920716

RESUMO

With a diversity of approximately 22,000 species, bryophytes (hornworts, liverworts, and mosses) represent a major and diverse lineage of land plants. Bryophytes can thrive in many extreme environments as they can endure the stresses of drought, heat, and cold. The moss Niphotrichum japonicum (Grimmiaceae, Grimmiales) can subsist for extended periods under heat and drought conditions, providing a good candidate for studying the genetic basis underlying such high resilience. Here, we de novo assembled the genome of N. japonicum using Nanopore long reads combined with Hi-C scaffolding technology to anchor the 191.61 Mb assembly into 14 pseudochromosomes. The genome structure of N. japonicum's autosomes is mostly conserved and highly syntenic, in contrast to the sparse and disordered genes present in its sex chromosome. Comparative genomic analysis revealed the presence of 10,019 genes exclusively in N. japonicum. These genes may contribute to the species-specific resilience, as demonstrated by the gene ontology (GO) enrichment. Transcriptome analysis showed that 37.44% (including 3,107 unique genes) of the total annotated genes (26,898) exhibited differential expression as a result of heat-induced stress, and the mechanisms that respond to heat stress are generally conserved across plants. These include the upregulation of HSPs, LEAs, and reactive oxygen species (ROS) scavenging genes, and the downregulation of PPR genes. N. japonicum also appears to have distinctive thermal mechanisms, including species-specific expansion and upregulation of the Self-incomp_S1 gene family, functional divergence of duplicated genes, structural clusters of upregulated genes, and expression piggybacking of hub genes. Overall, our study highlights both shared and species-specific heat tolerance strategies in N. japonicum, providing valuable insights into the heat tolerance mechanism and the evolution of resilient plants.

5.
Front Immunol ; 13: 818017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281012

RESUMO

Unified airway disease, including concurrent asthma and chronic rhinosinusitis (CRS), is a common, but poorly understood disorder with no curative treatment options. To establish a murine model of chronic unified eosinophilic airway inflammation, mice were challenged with Aspergillus niger, and sinonasal mucosa and lung tissue were evaluated by immunohistochemistry, flow cytometry, and gene expression. Inhalation of A niger conidia resulted in a Th2-biased lung and sinus inflammation that typifies allergic asthma and CRS. Gene network and pathway analysis correlated with human disease with upregulation of not only the JAK-STAT and helper T-cell pathways, but also less expected pathways governing the spliceosome, osteoclast differentiation, and coagulation pathways. Utilizing a specific inhibitor and gene-deficient mice, we demonstrate that STAT6 is required for mycosis-induced sinus inflammation. These findings confirm the relevance of this new model and portend future studies that further extend our understanding of the immunopathologic basis of airway mycosis and unified airway disease.


Assuntos
Asma , Eosinofilia , Sinusite , Animais , Aspergillus , Asma/patologia , Eosinofilia/patologia , Inflamação , Pulmão/patologia , Camundongos , Fator de Transcrição STAT6
6.
Genome Biol Evol ; 14(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35166770

RESUMO

Mosses compose one of the three lineages of bryophytes. Today, about 13,000 species of mosses are recognized from across the globe, and at least one-third of this diversity composes the Hypnales, a lineage characterized by an early rapid radiation. We sequenced and de novo assembled the genomes of two hypnalean mosses, namely Entodon seductrix and Hypnum curvifolium, based on the 10x genomics and Hi-C data. The genome assemblies of E. seductrix and H. curvifolium comprise 348.4 and 262.0 Mb, respectively, estimated by k-mer analyses to represent 93.3% and 97.2% of their total genome size. Both genomes were assembled at the chromosome level, with scaffold N50 of 30.0 and 20.7 Mb, respectively. The annotated genome of E. seductrix comprises 25,801 protein-coding genes and that of H. curvifolium 29,077, estimated to represent 96.8% and 97.2%, respectively, of the total gene spaces based on BUSCO (Benchmarking Universal Single-Copy Ortholog) assessment. For both genomes, most contigs were anchored to the largest 11 pseudomolecules, corresponding to the 11 chromosomes of the two species, and each with a putative sex-related chromosome characterized by low gene density. The chromosomes of E. seductrix and H. curvifolium are highly syntenic, suggests limited architectural shifts occurred following the rapid radiation of the Hypnales. We compared their genomic features to the model moss Physcomitrium patens. The hypnalean moss genomes lack signatures of recent whole-genome duplication. The presented high-quality moss genomes provide new resources for comparative genomics to potentially unveil the genomic evolution of derived moss lineages.


Assuntos
Briófitas , Bryopsida , Briófitas/genética , Bryopsida/genética , Cromossomos , Genoma , Cromossomos Sexuais , Sintenia
7.
Nat Commun ; 12(1): 7083, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873160

RESUMO

The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.


Assuntos
Atlas como Assunto , Análise de Célula Única/veterinária , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Aves , Comunicação Celular , Evolução Molecular , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Pulmão/citologia , Pulmão/metabolismo , Pulmão/virologia , Mamíferos , Receptores Virais/genética , Receptores Virais/metabolismo , Répteis , SARS-CoV-2/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transcriptoma , Tropismo Viral , Internalização do Vírus
8.
Respir Res ; 22(1): 263, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629055

RESUMO

BACKGROUND: Inhalation of fungal spores is a strong risk factor for severe asthma and experimentally leads to development of airway mycosis and asthma-like disease in mice. However, in addition to fungal spores, humans are simultaneously exposed to other inflammatory agents such as lipopolysaccharide (LPS), with uncertain relevance to disease expression. To determine how high dose inhalation of LPS influences the expression of allergic airway disease induced by the allergenic mold Aspergillus niger (A. niger). METHODS: C57BL/6J mice were intranasally challenged with the viable spores of A. niger with and without 1 µg of LPS over two weeks. Changes in airway hyperreactivity, airway and lung inflammatory cell recruitment, antigen-specific immunoglobulins, and histopathology were determined. RESULTS: In comparison to mice challenged only with A. niger, addition of LPS (1 µg) to A. niger abrogated airway hyperresponsiveness and strongly attenuated airway eosinophilia, PAS+ goblet cells and TH2 responses while enhancing TH1 and TH17 cell recruitment to lung. Addition of LPS resulted in more severe, diffuse lung inflammation with scattered, loosely-formed parenchymal granulomas, but failed to alter fungus-induced IgE and IgG antibodies. CONCLUSIONS: In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a relatively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.


Assuntos
Alveolite Alérgica Extrínseca/microbiologia , Aspergillus niger/patogenicidade , Hiper-Reatividade Brônquica/microbiologia , Lipopolissacarídeos , Pulmão/microbiologia , Aspergilose Pulmonar/microbiologia , Esporos Fúngicos/patogenicidade , Alveolite Alérgica Extrínseca/induzido quimicamente , Alveolite Alérgica Extrínseca/imunologia , Alveolite Alérgica Extrínseca/fisiopatologia , Animais , Aspergillus niger/imunologia , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Broncoconstrição , Modelos Animais de Doenças , Eosinófilos/imunologia , Exposição por Inalação , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Aspergilose Pulmonar/imunologia , Aspergilose Pulmonar/fisiopatologia , Esporos Fúngicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
9.
Immunity ; 54(11): 2595-2610.e7, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506733

RESUMO

Fungal airway infection (airway mycosis) is an important cause of allergic airway diseases such as asthma, but the mechanisms by which fungi trigger asthmatic reactions are poorly understood. Here, we leverage wild-type and mutant Candida albicans to determine how this common fungus elicits characteristic Th2 and Th17 cell-dependent allergic airway disease in mice. We demonstrate that rather than proteinases that are essential virulence factors for molds, C. albicans instead promoted allergic airway disease through the peptide toxin candidalysin. Candidalysin activated platelets through the Von Willebrand factor (VWF) receptor GP1bα to release the Wnt antagonist Dickkopf-1 (Dkk-1) to drive Th2 and Th17 cell responses that correlated with reduced lung fungal burdens. Platelets simultaneously precluded lethal pulmonary hemorrhage resulting from fungal lung invasion. Thus, in addition to hemostasis, platelets promoted protection against C. albicans airway mycosis through an antifungal pathway involving candidalysin, GP1bα, and Dkk-1 that promotes Th2 and Th17 responses.


Assuntos
Plaquetas/imunologia , Candida albicans/fisiologia , Candidíase/complicações , Candidíase/imunologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Hipersensibilidade/complicações , Hipersensibilidade/imunologia , Subpopulações de Linfócitos T/imunologia , Plaquetas/metabolismo , Hipersensibilidade/metabolismo , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
10.
J Genet Genomics ; 48(4): 277-288, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34052184

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease, leading to the impairment of movement execution. PD pathogenesis has been largely investigated, either limited to bulk transcriptomic levels or at certain cell types, which failed to capture the cellular heterogeneity and intrinsic interplays among distinct cell types. Here, we report the application of single-nucleus RNA-seq on midbrain, striatum, and cerebellum of the α-syn-A53T mouse, a well-established PD mouse model, and matched controls, generating the first single cell transcriptomic atlas for the PD model mouse brain composed of 46,174 individual cells. Additionally, we comprehensively depicte the dysfunctions in PD pathology, covering the elevation of NF-κB activity, the alteration of ion channel components, the perturbation of protein homeostasis network, and the dysregulation of glutamatergic signaling. Notably, we identify a variety of cell types closely associated with PD risk genes. Taken together, our study provides valuable resources to systematically dissect the molecular mechanism of PD pathogenesis at the single-cell resolution, which facilitates the development of novel approaches for diagnosis and therapies against PD.


Assuntos
Encéfalo/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas Musculares/genética , Doença de Parkinson/genética , Transcriptoma/genética , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/ultraestrutura , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/ultraestrutura , Modelos Animais de Doenças , Humanos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Mesencéfalo/ultraestrutura , Camundongos , NF-kappa B/genética , Doença de Parkinson/patologia , RNA-Seq , Análise de Célula Única/tendências
11.
Sci Bull (Beijing) ; 66(14): 1448-1461, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654371

RESUMO

The brain of the domestic pig (Sus scrofa domesticus) has drawn considerable attention due to its high similarities to that of humans. However, the cellular compositions of the pig brain (PB) remain elusive. Here we investigated the single-nucleus transcriptomic profiles of five regions of the PB (frontal lobe, parietal lobe, temporal lobe, occipital lobe, and hypothalamus) and identified 21 cell subpopulations. The cross-species comparison of mouse and pig hypothalamus revealed the shared and specific gene expression patterns at the single-cell resolution. Furthermore, we identified cell types and molecular pathways closely associated with neurological disorders, bridging the gap between gene mutations and pathogenesis. We reported, to our knowledge, the first single-cell atlas of domestic pig cerebral cortex and hypothalamus combined with a comprehensive analysis across species, providing extensive resources for future research regarding neural science, evolutionary developmental biology, and regenerative medicine.

12.
Cancer Lett ; 437: 44-55, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30165197

RESUMO

Invadopodia are actin-based cortical protrusions of tumour cells, and required for stromal invasion and metastasis. Extracellular matrix protein 1 (ECM1) has long been regarded as a secretory protein, but the mechanism of its precise functions in tumour cells is still obscure. Recently published data suggested a function of ECM1 in remodelling the actin cytoskeleton; however, its role in invadopodia formation remains unknown. Here, we demonstrated for the first time that ECM1 was a membrane protein and was essential for invadopodia formation by breast cancer cells. ECM1 depletion attenuated the ability of tumour cells to matrix attachment, invasion, and spontaneous metastasis to the lungs of mice. Additionally, co-expression of ECM1 and moesin (MSN) was closely related to aggressive breast cancer phenotypes. ECM1 interacted with MSN and recruited it adjacent to the membrane in order to promote MSN membrane translocation and phosphorylation, which facilitated invadopodia formation by breast cancer cells. These results elucidate a novel mechanism underlying the role of ECM1 in breast cancer metastasis and suggest ECM1 as a potential therapeutic target for overcoming tumour dissemination.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podossomos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteínas da Matriz Extracelular/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Células MCF-7 , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Proteínas dos Microfilamentos/genética , Invasividade Neoplásica
13.
Cell Death Dis ; 9(3): 347, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497031

RESUMO

WW domain-binding protein 2 (WBP2) has been demonstrated as oncogenic in breast cancer. Many studies have revealed the WBP2 gene as a high-risk gene for leukoariaosis and cerebral white matter lesions is important in the pathologic stage of glioma development. This study aimed to illustrate the underlying mechanism by which WBP2 regulates the process of glioma development. The expression pattern of WBP2 in several tumor cells was determined, clarifying the carcinogenic action of WBP2 in glioma cells. Overexpression of WBP2 in glioma cells promoted cell proliferation and migration, and the number of S-phase cells, whereas the depletion of WBP2 by RNAi-mediated knockdown restrained cell growth and cell cycle progression. Upregulation of WBP2 significantly enhanced the tumorigenic ability of U251 cells in vivo. MS/GST pulldown assay identified α-enolase (ENO1) and Homer protein homolog 3 (Homer3) as novel potent interaction partners of WBP2. Knockdown of ENO1 or Homer3 allowed cell growth and migration to return to normal levels. Furthermore, in vitro and in vivo experiments indicated that the oncogenic role of WBP2 in glioma was through modulating ENO1 and glycolysis activity via the ENO1-PI3K/Akt signaling pathway. Collectively, these results reveal that WBP2 plays a vital role in the occurrence and development of glioma, indicating a target gene for glioblastoma treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioma/metabolismo , Camundongos Nus/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Ciclo Celular , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Glioma/genética , Glioma/fisiopatologia , Glicólise , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus/genética , Pessoa de Meia-Idade , Oncogenes , Fosfopiruvato Hidratase/genética , Ligação Proteica , Transativadores , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA