Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240081

RESUMO

Nitrogen (N) stress seriously constrains barley (Hordeum vulgare L.) production globally by influencing its growth and development. In this study, we used a recombinant inbred line (RIL) population of 121 crosses between the variety Baudin and the wild barley accession CN4027 to detect QTL for 27 traits at the seedling stage in hydroponic culture trials and 12 traits at the maturity stage in field trials both under two N treatments, aiming to uncover favorable alleles for N tolerance in wild barley. In total, eight stable QTL and seven QTL clusters were detected. Among them, the stable QTL Qtgw.sau-2H located in a 0.46 cM interval on the chromosome arm 2HL was a novel QTL specific for low N. Notably, Clusters C4 and C7 contained QTL for traits at both the seedling and maturity stages. In addition, four stable QTLs in Cluster C4 were identified. Furthermore, a gene (HORVU2Hr1G080990.1) related to grain protein in the interval of Qtgw.sau-2H was predicted. Correlation analysis and QTL mapping showed that different N treatments significantly affected agronomic and physiological traits at the seedling and maturity stages. These results provide valuable information for understanding N tolerance as well as breeding and utilizing the loci of interest in barley.


Assuntos
Hordeum , Hordeum/genética , Plântula/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo
2.
Front Plant Sci ; 13: 999414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172559

RESUMO

Maximum root length (MRL) plays an important role in the uptake of nutrients and resisting abiotic stresses. Understanding the genetic mechanism of root development is of great significance for genetic improvement of wheat. Previous studies have confirmed that parental reproductive environment (PRE) has a significant impact on growth and development of the next generation in the whole life cycle of a given plant. In this study, a recombinant inbred line population genotyped using the Wheat55K SNP array, was used to map quantitative trait loci (QTL) for wheat seedling MRL based on the harvested seeds from five different PREs. A total of 5 QTL located on chromosomes 3D and 7A were identified. Among them, QMrl.sicau-2SY-3D.2 located in a 4.0 cM interval on chromosome 3D was likely independent of PREs. QMrl.sicau-2SY-7A.2 was detected in two tests and probably influenced by PREs. The effect of QMrl.sicau-2SY-3D.2 was further validated using the tightly linked kompetitive allele specific PCR (KASP) marker, KASP-AX-111589572, in populations with different genetic backgrounds. Lines with a combination of positive alleles from QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 have significantly longer MRL. Furthermore, four genes (TraesCS3D03G0612000, TraesCS3D03G0608400, TraesCS3D03G0613600, and TraesCS3D03G0602400) mainly expressed in wheat root were predicted to be associated with root growth. Taken together, this study reports on a major QTL independent of PREs and lays a foundation for understanding the regulation mechanism of wheat MRL at the seedling stage.

3.
Front Plant Sci ; 13: 995183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092437

RESUMO

Optimizing root system architecture (RSA) allows crops to better capture water and nutrients and adapt to harsh environment. Parental reproductive environment (PRE) has been reported to significantly affect growth and development throughout the life cycle of the next generation. In this study, 10 RSA-related traits were evaluated in seedling stage from five independent hydroponic tests using seeds harvested from five different PREs. Based on the Wheat55K SNP array-based genetic map, quantitative trait loci (QTL) for these traits were detected in a recombinant inbred line population. Twenty-eight putative QTL for RSA-related traits were detected, covering thirteen chromosomal regions. A major QTL, QTrl.sicau-2SY-4D for total root length (TRL), which was likely independent of PREs, explained 15.81-38.48% of phenotypic variations and was located at 14.96-19.59 Mb on chromosome arm 4DS. Interestingly, it showed pleiotropic effects on TRL, root area, root volume, root forks, root dry weight, and shoot dry weight. The functional marker KASP-Rht-D1 for Rht-D1 was used to genotype 2SY population and remapping QTL for TRL showed that QTrl.sicau-2SY-4D was not linked to Rht-D1. The kompetitive allele-specific PCR (KASP) marker, KASP-AX-110527441 linked to this major QTL, was developed and used to successfully validate its effect in three different genetic populations. Further analysis suggested that the positive allele at QTrl.sicau-2SY-4D was mainly utilized in wheat breeding of northwest China where precipitation was significantly lower, indicating that wheat requires longer TRL to capture water and nutrients in arid or semi-arid regions due to deficient precipitation. Additionally, four genes (TraesCS4D03G0059800, TraesCS4D03G0057800, TraesCS4D03G0064000, and TraesCS4D03G0064400) possibly related to root development were predicted in physical interval of QTrl.sicau-2SY-4D. Taken together, these results enrich our understanding on the genetic basis of RSA and provide a potentially valuable TRL QTL for wheat breeding.

4.
Front Microbiol ; 9: 1088, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896169

RESUMO

Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA-NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin-Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected.

5.
Front Microbiol ; 8: 1084, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659898

RESUMO

The H5 subtype virus of Highly Pathogenic Avian Influenza Virus has caused huge economic losses to the poultry industry and is a threat to human health. Until 2010, H5N1 subtype virus was the major genotype in China. Since 2011, reassortant H5N2, H5N6, and H5N8 viruses were identified in domestic poultry in China. The clade 2.3.4.4 H5N6 and H5N8 AIV has now spread to most of China. Clade 2.3.4.4 H5N6 virus has caused 17 human deaths. However, the prevalence, pathogenicity, and transmissibility of the distinct NA reassortment with H5 subtypes viruses (H5Nx) is unknown. We constructed five clade 2.3.4.4 reassortant H5Nx viruses that shared the same HA and six internal gene segments. The NA gene segment was replaced with N1, N2, N6, ΔN6 (with an 11 amino acid deletion at the 58th to 68th of NA stalk region), and N8 strains, respectively. The reassortant viruses with distinct NAs of clade 2.3.4.4 H5 subtype had different degrees of fitness. All reassortant H5Nx viruses formed plaques on MDCK cell monolayers, but the ΔH5N6 grew more efficiently in mammalian and avian cells. The reassortant H5Nx viruses were more virulent in mice as compared to the H5N2 virus. The H5N6 and H5N8 reassortant viruses exhibited enhanced pathogenicity and transmissibility in chickens as compared to the H5N1 reassortant virus. We suggest that comprehensive surveillance work should be undertaken to monitor the H5Nx viruses.

6.
Sci Rep ; 6: 19474, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26782141

RESUMO

Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts.


Assuntos
Adaptação Fisiológica/fisiologia , Vírus da Influenza A Subtipo H10N8/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2/patogenicidade , Mamíferos/virologia , Substituição de Aminoácidos/genética , Animais , Aves , Galinhas , China , Cães , Feminino , Células HEK293 , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Virulência/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA