Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365248

RESUMO

The microbiome of the built environment comprises bacterial, archaeal, fungal, and viral communities associated with human-made structures. Even though most of these microbes are benign, antibiotic-resistant pathogens can colonize and emerge indoors, creating infection risk through surface transmission or inhalation. Several studies have catalogued the microbial composition and ecology in different built environment types. These have informed in vitro studies that seek to replicate the physicochemical features that promote pathogenic survival and transmission, ultimately facilitating the development and validation of intervention techniques used to reduce pathogen accumulation. Such interventions include using Bacillus-based cleaning products on surfaces or integrating bacilli into printable materials. Though this work is in its infancy, early research suggests the potential to use microbial biocontrol to reduce hospital- and home-acquired multidrug-resistant infections. Although these techniques hold promise, there is an urgent need to better understand the microbial ecology of built environments and to determine how these biocontrol solutions alter species interactions. This review covers our current understanding of microbial ecology of the built environment and proposes strategies to translate that knowledge into effective biocontrol of antibiotic-resistant pathogens.


Assuntos
Bacillus , Microbiota , Humanos , Bactérias/genética , Antibacterianos , Ambiente Construído
2.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295882

RESUMO

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Assuntos
Asma , Hipersensibilidade , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Hipersensibilidade/genética , Asma/etiologia , Genômica , Proteômica , Metabolômica
3.
PLoS Comput Biol ; 19(10): e1011594, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37903176

RESUMO

Bacteroides fragilis is a universal member of the dominant commensal gut phylum Bacteroidetes. Its fermentation products and abundance have been linked to obesity, inflammatory bowel disease, and other disorders through its effects on host metabolic regulation and the immune system. As of yet, there has been no curated systems-level characterization of B. fragilis' metabolism that provides a comprehensive analysis of the link between human diet and B. fragilis' metabolic products. To address this, we developed a genome-scale metabolic model of B. fragilis strain 638R. The model iMN674 contains 1,634 reactions, 1,362 metabolites, three compartments, and reflects the strain's ability to utilize 142 metabolites. Predictions made with this model include its growth rate and efficiency on these substrates, the amounts of each fermentation product it produces under different conditions, and gene essentiality for each biomass component. The model highlights and resolves gaps in knowledge of B. fragilis' carbohydrate metabolism and its corresponding transport proteins. This high quality model provides the basis for rational prediction of B. fragilis' metabolic interactions with its environment and its host.


Assuntos
Bacteroides fragilis , Proteínas de Transporte , Humanos , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Proteínas de Transporte/metabolismo
4.
Metab Eng ; 80: 12-24, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678664

RESUMO

The capability of cyanobacteria to produce sucrose from CO2 and light has a remarkable societal and biotechnological impact since sucrose can serve as a carbon and energy source for a variety of heterotrophic organisms and can be converted into value-added products. However, most metabolic engineering efforts have focused on understanding local pathway alterations that drive sucrose biosynthesis and secretion in cyanobacteria rather than analyzing the global flux re-routing that occurs following induction of sucrose production by salt stress. Here, we investigated global metabolic flux alterations in a sucrose-secreting (cscB-overexpressing) strain relative to its wild-type Synechococcus elongatus 7942 parental strain. We used targeted metabolomics, 13C metabolic flux analysis (MFA), and genome-scale modeling (GSM) as complementary approaches to elucidate differences in cellular resource allocation by quantifying metabolic profiles of three cyanobacterial cultures - wild-type S. elongatus 7942 without salt stress (WT), wild-type with salt stress (WT/NaCl), and the cscB-overexpressing strain with salt stress (cscB/NaCl) - all under photoautotrophic conditions. We quantified the substantial rewiring of metabolic fluxes in WT/NaCl and cscB/NaCl cultures relative to WT and identified a metabolic bottleneck limiting carbon fixation and sucrose biosynthesis. This bottleneck was subsequently mitigated through heterologous overexpression of glyceraldehyde-3-phosphate dehydrogenase in an engineered sucrose-secreting strain. Our study also demonstrates that combining 13C-MFA and GSM is a useful strategy to both extend the coverage of MFA beyond central metabolism and to improve the accuracy of flux predictions provided by GSM.


Assuntos
Engenharia Metabólica , Synechococcus , Cloreto de Sódio/metabolismo , Metabolismo dos Carboidratos , Synechococcus/genética , Synechococcus/metabolismo , Sacarose/metabolismo , Fotossíntese
5.
PLoS Comput Biol ; 19(8): e1011371, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556472

RESUMO

The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.


Assuntos
Rodopseudomonas , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Benzoatos/metabolismo , Fotossíntese/genética
6.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214910

RESUMO

Microbiome science has greatly contributed to our understanding of microbial life and its essential roles for the environment and human health1-5. However, the nature of microbial interactions and how microbial communities respond to perturbations remains poorly understood, resulting in an often descriptive and correlation-based approach to microbiome research6-8. Achieving causal and predictive microbiome science would require direct functional measurements in complex communities to better understand the metabolic role of each member and its interactions with others. In this study we present a new approach that integrates transcription and translation measurements to predict competition and substrate preferences within microbial communities, consequently enabling the selective manipulation of the microbiome. By performing metatranscriptomic (metaRNA-Seq) and metatranslatomic (metaRibo-Seq) analysis in complex samples, we classified microbes into functional groups (i.e. guilds) and demonstrated that members of the same guild are competitors. Furthermore, we predicted preferred substrates based on importer proteins, which specifically benefited selected microbes in the community (i.e. their niche) and simultaneously impaired their competitors. We demonstrated the scalability of microbial guild and niche determination to natural samples and its ability to successfully manipulate microorganisms in complex microbiomes. Thus, the approach enhances the design of pre- and probiotic interventions to selectively alter members within microbial communities, advances our understanding of microbial interactions, and paves the way for establishing causality in microbiome science.

7.
NPJ Syst Biol Appl ; 9(1): 7, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922521

RESUMO

Algal cultivations are strongly influenced by light and dark cycles. In this study, genome-scale metabolic models were applied to optimize nutrient supply during alternating light and dark cycles of Chlorella vulgaris. This approach lowered the glucose requirement by 75% and nitrate requirement by 23%, respectively, while maintaining high final biomass densities that were more than 80% of glucose-fed heterotrophic culture. Furthermore, by strictly controlling glucose feeding during the alternating cycles based on model-input, yields of biomass, lutein, and fatty acids per gram of glucose were more than threefold higher with cycling compared to heterotrophic cultivation. Next, the model was incorporated into open-loop and closed-loop control systems and compared with traditional fed-batch systems. Closed-loop systems which incorporated a feed-optimizing algorithm increased biomass yield on glucose more than twofold compared to standard fed-batch cultures for cycling cultures. Finally, the performance was compared to conventional proportional-integral-derivative (PID) controllers. Both simulation and experimental results exhibited superior performance for genome-scale model process control (GMPC) compared to traditional PID systems, reducing the overall measured value and setpoint error by 80% over 8 h. Overall, this approach provides researchers with the capability to enhance nutrient utilization and productivity of cell factories systematically by combining genome-scale models and controllers into an integrated platform with superior performance to conventional fed-batch and PID methodologies.


Assuntos
Chlorella vulgaris , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Técnicas de Cultura Celular por Lotes , Ácidos Graxos/metabolismo , Nutrientes , Glucose/metabolismo
8.
Methods Mol Biol ; 2611: 63-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807064

RESUMO

The hyperactive Tn5 transposase in the ATAC-seq method has been widely used to determine the open DNA regions and understand the overall epigenomic regulation in the chromatins of eukaryotic cells. Here, we describe POP-seq (Prokaryotic chromatin Openness Profiling sequencing), an adaptation of the ATAC-seq method, to interrogate changes in the openness of prokaryotic nucleoids.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA , Genoma Bacteriano
9.
mSystems ; 7(6): e0095122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472419

RESUMO

Microbial soil communities form commensal relationships with plants to promote the growth of both parties. The optimization of plant-microbe interactions to advance sustainable agriculture is an important field in agricultural research. However, investigation in this field is hindered by a lack of model microbial community systems and efficient approaches for building these communities. Two key challenges in developing standardized model communities are maintaining community diversity over time and storing/resuscitating these communities after cryopreservation, especially considering the different growth rates of organisms. Here, a model synthetic community (SynCom) of 16 soil microorganisms commonly found in the rhizosphere of diverse plant species, isolated from soil surrounding a single switchgrass plant, has been developed and optimized for in vitro experiments. The model soil community grows reproducibly between replicates and experiments, with a high community α-diversity being achieved through growth in low-nutrient media and through the adjustment of the starting composition ratios for the growth of individual organisms. The community can additionally be cryopreserved with glycerol, allowing for easy replication and dissemination of this in vitro system. Furthermore, the SynCom also grows reproducibly in fabricated ecosystem devices (EcoFABs), demonstrating the application of this community to an existing in vitro plant-microbe system. EcoFABs allow reproducible research in model plant systems, offering the precise control of environmental conditions and the easy measurement of plant microbe metrics. Our results demonstrate the generation of a stable and diverse microbial SynCom for the rhizosphere that can be used with EcoFAB devices and can be shared between research groups for maximum reproducibility. IMPORTANCE Microbes associate with plants in distinct soil communities to the benefit of both the soil microbes and the plants. Interactions between plants and these microbes can improve plant growth and health and are therefore a field of study in sustainable agricultural research. In this study, a model community of 16 soil bacteria has been developed to further the reproducible study of plant-soil microbe interactions. The preservation of the microbial community has been optimized for dissemination to other research settings. Overall, this work will advance soil microbe research through the optimization of a robust, reproducible model community.


Assuntos
Microbiota , Solo , Reprodutibilidade dos Testes , Microbiologia do Solo , Raízes de Plantas , Plantas/microbiologia
10.
NPJ Syst Biol Appl ; 8(1): 50, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575180

RESUMO

Bacillus subtilis is a well-characterized microorganism and a model for the study of Gram-positive bacteria. The bacterium can produce proteins at high densities and yields, which has made it valuable for industrial bioproduction. Like other cell factories, metabolic modeling of B. subtilis has discovered ways to optimize its metabolism toward various applications. The first genome-scale metabolic model (M-model) of B. subtilis was published more than a decade ago and has been applied extensively to understand metabolism, to predict growth phenotypes, and served as a template to reconstruct models for other Gram-positive bacteria. However, M-models are ill-suited to simulate the production and secretion of proteins as well as their proteomic response to stress. Thus, a new generation of metabolic models, known as metabolism and gene expression models (ME-models), has been initiated. Here, we describe the reconstruction and validation of a ME model of B. subtilis, iJT964-ME. This model achieved higher performance scores on the prediction of gene essentiality as compared to the M-model. We successfully validated the model by integrating physiological and omics data associated with gene expression responses to ethanol and salt stress. The model further identified the mechanism by which tryptophan synthesis is upregulated under ethanol stress. Further, we employed iJT964-ME to predict amylase production rates under two different growth conditions. We analyzed these flux distributions and identified key metabolic pathways that permitted the increase in amylase production. Models like iJT964-ME enable the study of proteomic response to stress and the illustrate the potential for optimizing protein production in bacteria.


Assuntos
Bacillus subtilis , Proteômica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Amilases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
BMC Bioinformatics ; 23(1): 512, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451100

RESUMO

BACKGROUND: Genome-scale metabolic reconstruction tools have been developed in the last decades. They have helped to reconstruct eukaryotic and prokaryotic metabolic models, which have contributed to fields, e.g., genetic engineering, drug discovery, prediction of phenotypes, and other model-driven discoveries. However, the use of these programs requires a high level of bioinformatic skills. Moreover, the functionalities required to build models are scattered throughout multiple tools, requiring knowledge and experience for utilizing several tools. RESULTS: Here we present ChiMera, which combines tools used for model reconstruction, prediction, and visualization. ChiMera uses CarveMe in the reconstruction module, generating a gap-filled draft reconstruction able to produce growth predictions using flux balance analysis for gram-positive and gram-negative bacteria. ChiMera also contains two modules for metabolic network visualization. The first module generates maps for the most important pathways, e.g., glycolysis, nucleotides and amino acids biosynthesis, fatty acid oxidation and biosynthesis and core-metabolism. The second module produces a genome-wide metabolic map, which can be used to retrieve KEGG pathway information for each compound in the model. A module to investigate gene essentiality and knockout is also present. CONCLUSIONS: Overall, ChiMera uses automation algorithms to combine a variety of tools to automatically perform model creation, gap-filling, flux balance analysis (FBA), and metabolic network visualization. ChiMera models readily provide metabolic insights that can aid genetic engineering projects, prediction of phenotypes, and model-driven discoveries.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Redes e Vias Metabólicas/genética , Genoma Bacteriano
12.
mSystems ; 7(6): e0044722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36317886

RESUMO

Microbiome studies have the common goal of determining which microbial taxa are present, respond to specific conditions, or promote phenotypic changes in the host. Most of these studies rely on relative abundance measurements to drive conclusions. Inherent limitations of relative values are the inability to determine whether an individual taxon is more or less abundant and the magnitude of this change between the two samples. These limitations can be overcome by using absolute abundance quantifications, which can allow for a more complete understanding of community dynamics by measuring variations in total microbial loads. Obtaining absolute abundance measurements is still technically challenging. Here, we developed synthetic DNA (synDNA) spike-ins that enable precise and cost-effective absolute quantification of microbiome data by adding defined amounts of synDNAs to the samples. We designed 10 synDNAs with the following features: 2,000-bp length, variable GC content (26, 36, 46, 56, or 66% GC), and negligible identity to sequences found in the NCBI database. Dilution pools were generated by mixing the 10 synDNAs at different concentrations. Shotgun metagenomic sequencing showed that the pools of synDNAs with different percentages of GC efficiently reproduced the serial dilution, showing high correlation (r = 0.96; R2 ≥ 0.94) and significance (P < 0.01). Furthermore, we demonstrated that the synDNAs can be used as DNA spike-ins to generate linear models and predict with high accuracy the absolute number of bacterial cells in complex microbial communities. IMPORTANCE The synDNAs designed in this study enable accurate and reproducible measurements of absolute amount and fold changes of bacterial species in complex microbial communities. The method proposed here is versatile and promising as it can be applied to bacterial communities or genomic features like genes and operons, in addition to being easily adaptable by other research groups at a low cost. We also made the synDNAs' sequences and the plasmids available to encourage future application of the proposed method in the study of microbial communities.


Assuntos
Metagenoma , Microbiota , Metagenoma/genética , Microbiota/genética , Bactérias/genética , Plasmídeos , DNA
13.
mSystems ; 7(5): e0075822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073806

RESUMO

Assigning taxonomy remains a challenging topic in microbiome studies, due largely to ambiguity of reads which overlap multiple reference genomes. With the Web of Life (WoL) reference database hosting 10,575 reference genomes and growing, the percentage of ambiguous reads will only increase. The resulting artifacts create both the illusion of co-occurrence and a long tail end of extraneous reference hits that confound interpretation. We introduce genome cover, the fraction of reference genome overlapped by reads, to distinguish these artifacts. We show how to dynamically predict genome cover by read count and examine our model in Staphylococcus aureus monoculture. Our modeling cleanly separates both S. aureus and true contaminants from the false artifacts of reference overlap. We next introduce saturated genome cover, the true fraction of a reference genome overlapped by sample contents. Genome cover may not saturate for low abundance or low prevalence bacteria. We assuage this worry with examination of a large human fecal data set. By compositing the metric across like samples, genome cover saturates even for rare species. We note that it is a threshold on saturated genome cover, not genome cover itself, which indicates a spurious reference hit or distant relative. We present Zebra, a method to compute and threshold the genome cover metric across like samples, a recurrence to estimate genome cover and confirm saturation, and provide guidance for choosing cover thresholds in real world scenarios. Standalone genome cover and integration into Woltka are available: https://github.com/biocore/zebra_filter, https://github.com/qiyunzhu/woltka. IMPORTANCE Taxonomic assignment, assigning sequences to specific taxonomic units, is a crucial processing step in microbiome analyses. Issues in taxonomic assignment affect interpretation of what microbes are present in each sample and may be associated with specific environmental or clinical conditions. Assigning importance to a particular taxon relies strongly on independence of assigned counts. The false inclusion of thousands of correlated taxa makes interpretation ambiguous, leading to underconstrained results which cannot be reproduced. The importance sometimes attached to implausible artifacts such as anthrax or bubonic plague is especially problematic. We show that the Zebra filter retrieves only the nearest relatives of sample contents enabling more reproducible and biologically plausible interpretation of metagenomic data.


Assuntos
Algoritmos , Microbiota , Humanos , Staphylococcus aureus/genética , Metagenoma , Metagenômica/métodos
14.
Nat Commun ; 13(1): 4630, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941112

RESUMO

Liver damage due to chronic alcohol use is among the most prevalent liver diseases. Alcohol consumption frequency is a strong factor of microbiota variance. Here we use isotope labeled [1-13C] ethanol, metagenomics, and metatranscriptomics in ethanol-feeding and intragastric mouse models to investigate the metabolic impacts of alcohol consumption on the gut microbiota. First, we show that although stable isotope labeled [1-13C] ethanol contributes to fatty acid pools in the liver, plasma, and cecum contents of mice, there is no evidence of ethanol metabolism by gut microbiota ex vivo under anaerobic conditions. Next, we observe through metatranscriptomics that the gut microbiota responds to ethanol-feeding by activating acetate dissimilation, not by metabolizing ethanol directly. We demonstrate that blood acetate concentrations are elevated during ethanol consumption. Finally, by increasing systemic acetate levels with glyceryl triacetate supplementation, we do not observe any impact on liver disease, but do induce similar gut microbiota alterations as chronic ethanol-feeding in mice. Our results show that ethanol is not directly metabolized by the gut microbiota, and changes in the gut microbiota linked to ethanol are a side effect of elevated acetate levels. De-trending for these acetate effects may be critical for understanding gut microbiota changes that cause alcohol-related liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatias , Acetatos/farmacologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Etanol/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
15.
mBio ; 13(3): e0093022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35608301

RESUMO

Staphylococcus hominis is frequently isolated from human skin, and we hypothesize that it may protect the cutaneous barrier from opportunistic pathogens. We determined that S. hominis makes six unique autoinducing peptide (AIP) signals that inhibit the major virulence factor accessory gene regulator (agr) quorum sensing system of Staphylococcus aureus. We solved and confirmed the structures of three novel AIP signals in conditioned medium by mass spectrometry and then validated synthetic AIP activity against all S. aureus agr classes. Synthetic AIPs also inhibited the conserved agr system in a related species, Staphylococcus epidermidis. We determined the distribution of S. hominis agr types on healthy human skin and found S. hominis agr-I and agr-II were highly represented across subjects. Further, synthetic AIP-II was protective in vivo against S. aureus-associated dermonecrotic or epicutaneous injury. Together, these findings demonstrate that a ubiquitous colonizer of human skin has a fundamentally protective role against opportunistic damage. IMPORTANCE Human skin is home to a variety of commensal bacteria, including many species of coagulase-negative staphylococci (CoNS). While it is well established that the microbiota as a whole maintains skin homeostasis and excludes pathogens (i.e., colonization resistance), relatively little is known about the unique contributions of individual CoNS species to these interactions. Staphylococcus hominis is the second most frequently isolated CoNS from healthy skin, and there is emerging evidence to suggest that it may play an important role in excluding pathogens, including Staphylococcus aureus, from colonizing or infecting the skin. Here, we identified that S. hominis makes 6 unique peptide inhibitors of the S. aureus global virulence factor regulation system (agr). Additionally, we found that one of these peptides can prevent topical or necrotic S. aureus skin injury in a mouse model. Our results demonstrate a specific and broadly protective role for this ubiquitous, yet underappreciated skin commensal.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas de Bactérias/genética , Humanos , Camundongos , Peptídeos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus , Staphylococcus aureus/genética , Staphylococcus epidermidis/fisiologia , Staphylococcus hominis , Fatores de Virulência
16.
PLoS Comput Biol ; 18(2): e1009828, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108266

RESUMO

The ammonia-oxidizing bacterium Nitrosomonas europaea has been widely recognized as an important player in the nitrogen cycle as well as one of the most abundant members in microbial communities for the treatment of industrial or sewage wastewater. Its natural metabolic versatility and extraordinary ability to degrade environmental pollutants (e.g., aromatic hydrocarbons such as benzene and toluene) enable it to thrive under various harsh environmental conditions. Constraint-based metabolic models constructed from genome sequences enable quantitative insight into the central and specialized metabolism within a target organism. These genome-scale models have been utilized to understand, optimize, and design new strategies for improved bioprocesses. Reduced modeling approaches have been used to elucidate Nitrosomonas europaea metabolism at a pathway level. However, genome-scale knowledge about the simultaneous oxidation of ammonia and pollutant metabolism of N. europaea remains limited. Here, we describe the reconstruction, manual curation, and validation of the genome-scale metabolic model for N. europaea, iGC535. This reconstruction is the most accurate metabolic model for a nitrifying organism to date, reaching an average prediction accuracy of over 90% under several growth conditions. The manually curated model can predict phenotypes under chemolithotrophic and chemolithoorganotrophic conditions while oxidating methane and wastewater pollutants. Calculated flux distributions under different trophic conditions show that several key pathways are affected by the type of carbon source available, including central carbon metabolism and energy production.


Assuntos
Amônia/metabolismo , Nitrosomonas europaea/metabolismo , Oxirredução
18.
Arterioscler Thromb Vasc Biol ; 41(11): 2730-2739, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34587757

RESUMO

Objective: Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results: We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions: Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Suplementos Nutricionais , Ácido N-Acetilneuramínico/administração & dosagem , Ácidos Neuramínicos/administração & dosagem , Placa Aterosclerótica , Ração Animal , Animais , Anticorpos/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/imunologia , Ácidos Neuramínicos/metabolismo , Pan troglodytes , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sialadenite/metabolismo , Sialadenite/patologia , Células THP-1
19.
Methods Mol Biol ; 2327: 87-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410641

RESUMO

Host DNA makes up the majority of DNA in a saliva sample. Therefore, shotgun metagenomics can be an inefficient way to evaluate the microbial populations of saliva since often <10% of the sequencing reads are microbial. In this chapter, we describe a method to deplete human DNA from fresh or frozen saliva samples, allowing for more efficient shotgun metagenomic sequencing of the salivary microbial community.


Assuntos
Metagenômica , Microbiota , DNA/genética , Humanos , Metagenoma , Microbiota/genética , Saliva , Análise de Sequência de DNA
20.
Curr Opin Biotechnol ; 71: 25-31, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091124

RESUMO

Genetically modified organisms (GMOs) have emerged as an integral component of a sustainable bioeconomy, with an array of applications in agriculture, bioenergy, and biomedicine. However, the rapid development of GMOs and associated synthetic biology approaches raises a number of biosecurity concerns related to environmental escape of GMOs, detection thereof, and impact upon native ecosystems. A myriad of genetic safeguards have been deployed in diverse microbial hosts, ranging from classical auxotrophies to global genome recoding. However, to realize the full potential of microbes as biocatalytic platforms in the bioeconomy, a deeper understanding of the fundamental principles governing microbial responsiveness to biocontainment constraints, and interactivity of GMOs with the environment, is required. Herein, we review recent analytical biotechnological advances and strategies to assess biocontainment and microbial bioproductivity, as well as opportunities for predictive systems biodesigns towards securing a viable bioeconomy.


Assuntos
Biotecnologia , Ecossistema , Agricultura , Genoma , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA