Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8007): 424-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509359

RESUMO

Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Humanos , Camundongos , Adenoma/microbiologia , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Fezes/microbiologia , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/patogenicidade , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Genoma Bacteriano/genética , Boca/microbiologia , Feminino
2.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398369

RESUMO

Cancerous tissue is a largely unexplored microbial niche that provides a unique environment for the colonization and growth of specific bacterial communities, and with it, the opportunity to identify novel bacterial species. Here, we report distinct features of a novel Fusobacterium species, F. sphaericum sp. nov. ( Fs ), isolated from primary colon adenocarcinoma tissue. We acquire the complete, closed genome of this organism and phylogenetically confirm its classification into the Fusobacterium genus. Phenotypic and genomic analysis of Fs reveal that this novel organism is of coccoid shape, rare for Fusobacterium members, and has species-distinct gene content. Fs displays a metabolic profile and antibiotic resistance repertoire consistent with other Fusobacterium species. In vitro, Fs has adherent and immunomodulatory capabilities, as it intimately associates with human colon cancer epithelial cells and promotes IL-8 secretion. Analysis of the prevalence and abundance of Fs in ∼1,750 human metagenomic samples shows that it is a moderately prevalent member of the human oral cavity and stool. Intriguingly, analysis of ∼1,270 specimens from patients with colorectal cancer demonstrate that Fs is significantly enriched in colonic and tumor tissue as compared to mucosa or feces. Our study sheds light on a novel bacterial species that is prevalent within the human intestinal microbiota and whose role in human health and disease requires further investigation.

3.
Cell Rep ; 41(7): 111625, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384132

RESUMO

Fusobacterium nucleatum (Fn) is a dominant bacterial species in colorectal cancer (CRC) tissue that is associated with cancer progression and poorer patient prognosis. Following a small-molecule inhibitor screen of 1,846 bioactive compounds against a Fn CRC isolate, we find that 15% of inhibitors are antineoplastic agents including fluoropyrimidines. Validation of these findings reveals that 5-fluorouracil (5-FU), a first-line CRC chemotherapeutic, is a potent inhibitor of Fn CRC isolates. We also identify members of the intratumoral microbiota, including Escherichia coli, that are resistant to 5-FU. Further, CRC E. coli isolates can modify 5-FU and relieve 5-FU toxicity toward otherwise-sensitive Fn and human CRC epithelial cells. Lastly, we demonstrate that ex vivo patient CRC tumor microbiota undergo community disruption after 5-FU exposure and have the potential to deplete 5-FU levels, reducing local drug efficacy. Together, these observations argue for further investigation into the role of the CRC intratumoral microbiota in patient response to chemotherapy.


Assuntos
Neoplasias Colorretais , Microbiota , Humanos , Fusobacterium nucleatum , Escherichia coli , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/patologia
4.
Microbiol Resour Announc ; 11(4): e0006622, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35254123

RESUMO

We report the complete genome sequence of Morganella morganii CTX51T, a strain isolated from the resected tumor of a patient with cecal colorectal adenocarcinoma of the cecum. The genome comprises a circular chromosome of 4.19 Mbp, with an overall GC content of 50.4% and one circular plasmid of 8.48 kbp.

5.
Microbiol Resour Announc ; 11(3): e0113521, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35234492

RESUMO

We report the complete genome sequence of Clostridium cadaveris IFB3C5, a strain isolated from the resected tumor of a treatment naive colorectal cancer patient. This genome is comprised of a singular chromosome of approximately 3.63 Mbp in length, contains two plasmids, and has an overall mean GC content of 31.7%.

6.
J Bacteriol ; 200(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555703

RESUMO

The bacterium Proteus mirabilis can communicate identity through the secretion of the self-identity protein IdsD via the type VI secretion (T6S) system. IdsD secretion is essential for self-versus-nonself recognition behaviors in these populations. Here we provide an answer to the unresolved question of how the activity of a T6S substrate, such as IdsD, is regulated before secretion. We demonstrate that IdsD is found in clusters that form independently of the T6S machinery and activity. We show that the IdsC protein, which is a member of the proposed DUF4123 chaperone family, is essential for the maintenance of these clusters and of the IdsD protein itself. We provide evidence that amino acid disruptions in IdsC are sufficient to disrupt IdsD secretion but not IdsD localization into subcellular clusters, strongly supporting the notion that IdsC functions in at least two different ways: maintaining IdsD levels and secreting IdsD. We propose that IdsC, and likely other DUF4123-containing proteins, functions to regulate T6S substrates in the donor cell both by maintaining protein levels and by mediating secretion at the T6S machinery.IMPORTANCE Understanding the subcellular dynamics of self-identity proteins is crucial for developing models of self-versus-nonself recognition. We directly addressed how a bacterium restricts self-identity information before cell-cell exchange. We resolved two conflicting models for type VI secretion (T6S) substrate regulation by focusing on the self-identity protein IdsD. One model is that a cognate immunity protein binds the substrate, inhibiting activity before transport. Another model proposes that DUF4123 proteins act as chaperones in the donor cell, but no detailed molecular mechanism was previously known. We resolve this discrepancy and propose a model wherein a chaperone couples IdsD sequestration with its localization. Such a molecular mechanism restricts the communication of identity, and possibly other T6S substrates, in producing cells.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteus mirabilis/metabolismo , Percepção de Quorum/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Chaperonas Moleculares
7.
PLoS One ; 12(9): e0184797, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28949977

RESUMO

The type VI secretion (T6S) system is a molecular device for the delivery of proteins from one cell into another. T6S function depends on the contractile sheath comprised of TssB/VipA and TssC/VipB proteins. We previously reported on a mutant variant of TssB that disrupts T6S-dependent export of the self-identity protein, IdsD, in the bacterium Proteus mirabilis. Here we determined the mechanism underlying that initial observation. We show that T6S-dependent export of multiple self-recognition proteins is abrogated in this mutant strain. We have mapped the mutation, which is a single amino acid change, to a region predicted to be involved in the formation of the TssB-TssC sheath. We have demonstrated that this mutation does indeed inhibit sheath formation, thereby explaining the global disruption of T6S activity. We propose that this mutation could be utilized as an important tool for studying functions and behaviors associated with T6S systems.


Assuntos
Mutação Puntual , Proteus mirabilis/genética , Sequência de Bases , Proteus mirabilis/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(21): 7653-8, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828531

RESUMO

Protein secretion typically involves translocation of unfolded polypeptides or transport of monomeric folded proteins. Here we provide, to our knowledge, the first experimental evidence for secretion of an intact multimeric complex requiring a signal formed by both members of the complex. Using systematic mutagenesis of a substrate involved in early secretory antigen 6 kDa (ESX) secretion in Bacillus subtilis, we demonstrate that export of the substrate requires two independent motifs. Using mixed dimers, we show that these motifs must form a composite secretion signal in which one motif is contributed by each subunit of the dimer. Finally, through targeted crosslinking we show that the dimer formed in the cell is likely secreted as a single unit. We discuss implications of this substrate recognition mechanism for the biogenesis and quality control of secretion substrates and describe its likely conservation across ESX systems.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Complexos Multiproteicos/metabolismo , Bacillus subtilis/metabolismo , Cromatografia em Gel , Dimerização , Eletroforese em Gel de Poliacrilamida , Mutagênese , Transporte Proteico/fisiologia , Corantes de Rosanilina
9.
Proc Natl Acad Sci U S A ; 111(2): E255-64, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379357

RESUMO

Bacterial chemotaxis proteins are organized into ordered arrays. In peritrichous organisms, such as Escherichia coli, stochastic assembly processes are thought to account for the placement of chemotaxis arrays, which are nonuniformly distributed. In contrast, we previously found that chemotactic signaling arrays in polarly flagellated vibrios are uniformly polar and that array localization is dependent on the ParA-like ATPase ParC. However, the processes that enable ParC to facilitate array localization have not been described. Here, we show that a previously uncharacterized protein, ParP, interacts with ParC and that ParP is integral to array localization in Vibrio parahaemolyticus. ParC's principal contribution to chemotaxis appears to be via positioning of ParP. Once recruited to the pole by ParC, ParP sequesters arrays at this site by capturing and preventing the dissociation of chemotactic signaling protein (CheA). Notably, ParP also stabilizes chemotactic protein complexes in the absence of ParC, indicating that some of its activity is independent of this interaction partner. ParP recruits CheA via CheA's localization and inheritance domain, a region found only in polarly flagellated organisms that encode ParP, ParC, and CheA. Thus, a tripartite (ParC-ParP-CheA) interaction network enables the polar localization and sequestration of chemotaxis arrays in polarly flagellated organisms. Localization and sequestration of chemotaxis clusters adjacent to the flagella--to which the chemotactic signal is transmitted--facilitates proper chemotaxis as well as accurate inheritance of these macromolecular machines.


Assuntos
Proteínas de Bactérias/fisiologia , Polaridade Celular/fisiologia , Quimiotaxia/fisiologia , Transdução de Sinais/fisiologia , Vibrio parahaemolyticus/genética , Ágar , Proteínas de Bactérias/metabolismo , Biologia Computacional , DNA Topoisomerase IV/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Recuperação de Fluorescência Após Fotodegradação , Histidina Quinase , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Microscopia de Fluorescência , Imagem com Lapso de Tempo , Vibrio cholerae , Vibrio parahaemolyticus/metabolismo
10.
Dev Dyn ; 241(10): 1545-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22911626

RESUMO

BACKGROUND: We investigated the roles of p120 catenin, Cdc42, Rac1, and RhoA GTPases in regulating migration of presomitic mesoderm cells in zebrafish embryos. p120 catenin has dual roles: It binds the intracellular and juxtamembrane region of cadherins to stabilize cadherin-mediated adhesion with the aid of RhoA GTPase, and it activates Cdc42 GTPase and Rac1 GTPase in the cytosol to initiate cell motility. RESULTS: During gastrulation of zebrafish embryos, knockdown of the synthesis of zygotic p120 catenin δ1 mRNAs with a splice-site morpholino caused lateral widening and anterior-posterior shortening of the presomitic mesoderm and somites and a shortened anterior-posterior axis. These phenotypes indicate a cell-migration effect. Co-injection of low amounts of wild-type Cdc42 or wild-type Rac1 or dominant-negative RhoA mRNAs, but not constitutively-active Cdc42 mRNA, rescued these p120 catenin δ1-depleted embryos. CONCLUSIONS: These downstream small GTPases require appropriate spatiotemporal stimulation or cycling of GTP to guide mesodermal cell migration. A delicate balance of Rho GTPases and p120 catenin underlies normal development.


Assuntos
Movimento Celular/fisiologia , Gastrulação/fisiologia , Mesoderma/metabolismo , Peixe-Zebra/embriologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Western Blotting , Cateninas/genética , Cateninas/metabolismo , Clonagem Molecular , Técnicas de Silenciamento de Genes , Guanosina Trifosfato/metabolismo , Hibridização In Situ , Mesoderma/citologia , Mesoderma/enzimologia , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , delta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA