Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(2): 675-682, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33406832

RESUMO

We report a study demonstrating that simultaneous induction of a steady-state convection current and temperature gradient in a confined geometry can be an effective way to force crowding of dissolved particulates. To investigate this thermogravitationally driven concentration of particles in situ, we developed a microdevice capable of sustaining controlled transverse temperature gradients within a 5 cm long, 0.1 mm inner diameter capillary that allowed visualization of particle movement with standard optical microscopy. Experiments were conducted on two material systems representative of nanoscale small molecules and microscale particles. With the small molecules (aromatic dyes, 530-790 g/mol, 1-1.5 nm), thermophoretic and gravitational effects in the microdevice resulted in an asymmetrical 2× concentration change along the capillary height over 3 days. In contrast, the concentration change under similar conditions for 40-micron diameter latex colloids is 50-fold in 30 min. This dramatic difference in separation times is consistent with simulations and models of thermophoresis where the thermophoretic effect scales with particle size. Induced crowding of particulates leads to formation of accumulation and depletion zones at the bottom and top of the capillary, respectively. Both the concentration of dye molecules over time in the depletion zone and the spatial distribution of colloids over the entire capillary length were found to be good fits to simple first-order exponential decay functions. These results suggest potential applications of thermogravitational separation in developing new functional materials via thermophoretic and convective effects.

2.
Langmuir ; 31(14): 4361-71, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25396748

RESUMO

In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ∼±11° in the velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen-Leslie-Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (∼90 and 0°). The technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays.


Assuntos
Hidrodinâmica , Dispositivos Lab-On-A-Chip , Cristais Líquidos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA