Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554706

RESUMO

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Assuntos
Adenosina Trifosfatases , Replicação do DNA , Instabilidade Genômica , Proteostase , Humanos , Adenosina Trifosfatases/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética
2.
Nature ; 627(8003): 437-444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383789

RESUMO

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Homeostase , Membranas Intracelulares/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , RNA de Transferência/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
3.
Nucleic Acids Res ; 51(20): 11080-11103, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823591

RESUMO

Chromatin association of the BRCA1-BARD1 heterodimer is critical to promote homologous recombination repair of DNA double-strand breaks (DSBs) in S/G2. How the BRCA1-BARD1 complex interacts with chromatin that contains both damage induced histone H2A ubiquitin and inhibitory H4K20 methylation is not fully understood. We characterised BRCA1-BARD1 binding and enzymatic activity to an array of mono- and di-nucleosome substrates using biochemical, structural and single molecule imaging approaches. We found that the BRCA1-BARD1 complex preferentially interacts and modifies di-nucleosomes over mono-nucleosomes, allowing integration of H2A Lys-15 ubiquitylation signals with other chromatin modifications and features. Using high speed- atomic force microscopy (HS-AFM) to monitor how the BRCA1-BARD1 complex recognises chromatin in real time, we saw a highly dynamic complex that bridges two nucleosomes and associates with the DNA linker region. Bridging is aided by multivalent cross-nucleosome interactions that enhance BRCA1-BARD1 E3 ubiquitin ligase catalytic activity. Multivalent interactions across nucleosomes explain how BRCA1-BARD1 can recognise chromatin that retains partial di-methylation at H4 Lys-20 (H4K20me2), a parental histone mark that blocks BRCA1-BARD1 interaction with nucleosomes, to promote its enzymatic and DNA repair activities.


Assuntos
Proteína BRCA1 , Cromatina , Nucleossomos , Ubiquitina-Proteína Ligases , Humanos , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Cromatina/química , Cromatina/metabolismo , Células HeLa , Histonas/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
4.
Prog Mol Biol Transl Sci ; 194: 109-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631189

RESUMO

The binding of vascular endothelial growth factor (VEGF) superfamily to VEGF receptor tyrosine kinases (VEGFRs) and co-receptors regulates vasculogenesis, angiogenesis and lymphangiogenesis. A recurring theme is that dysfunction in VEGF signaling promotes pathological angiogenesis, an important feature of cancer and pro-inflammatory disease states. Endocytosis of basal (resting) or activated VEGFRs facilitates signal attenuation and endothelial quiescence. However, increasing evidence suggest that activated VEGFRs can continue to signal from intracellular compartments such as endosomes. In this chapter, we focus on the evolving link between VEGFR endocytosis, signaling and turnover and the implications for angiogenesis. There is much interest in how such understanding of VEGFR dynamics can be harnessed therapeutically for a wide range of human disease states.


Assuntos
Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Linfangiogênese/fisiologia , Endocitose
5.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35938958

RESUMO

The BRCA1-A complex contains matching lysine-63 ubiquitin (K63-Ub) binding and deubiquitylating activities. How these functionalities are coordinated to effectively respond to DNA damage remains unknown. We generated Brcc36 deubiquitylating enzyme (DUB) inactive mice to address this gap in knowledge in a physiologic system. DUB inactivation impaired BRCA1-A complex damage localization and repair activities while causing early lethality when combined with Brca2 mutation. Damage response dysfunction in DUB-inactive cells corresponded to increased K63-Ub on RAP80 and BRCC36. Chemical cross-linking coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and cryogenic-electron microscopy (cryo-EM) analyses of isolated BRCA1-A complexes demonstrated the RAP80 ubiquitin interaction motifs are occupied by ubiquitin exclusively in the DUB-inactive complex, linking auto-inhibition by internal K63-Ub chains to loss of damage site ubiquitin recognition. These findings identify RAP80 and BRCC36 as autologous DUB substrates in the BRCA1-A complex, thus explaining the evolution of matching ubiquitin-binding and hydrolysis activities within a single macromolecular assembly.


Assuntos
Proteína BRCA1 , Dano ao DNA , Proteínas de Ligação a DNA , Enzimas Desubiquitinantes , Chaperonas de Histonas , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Cromatografia Líquida , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Camundongos , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo
6.
Nat Commun ; 13(1): 3372, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690592

RESUMO

Glycogen is the major glucose reserve in eukaryotes, and defects in glycogen metabolism and structure lead to disease. Glycogenesis involves interaction of glycogenin (GN) with glycogen synthase (GS), where GS is activated by glucose-6-phosphate (G6P) and inactivated by phosphorylation. We describe the 2.6 Å resolution cryo-EM structure of phosphorylated human GS revealing an autoinhibited GS tetramer flanked by two GN dimers. Phosphorylated N- and C-termini from two GS protomers converge near the G6P-binding pocket and buttress against GS regulatory helices. This keeps GS in an inactive conformation mediated by phospho-Ser641 interactions with a composite "arginine cradle". Structure-guided mutagenesis perturbing interactions with phosphorylated tails led to increased basal/unstimulated GS activity. We propose that multivalent phosphorylation supports GS autoinhibition through interactions from a dynamic "spike" region, allowing a tuneable rheostat for regulating GS activity. This work therefore provides insights into glycogen synthesis regulation and facilitates studies of glycogen-related diseases.


Assuntos
Glucosiltransferases , Glicogênio Sintase , Glucose-6-Fosfato/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Humanos , Músculo Esquelético/metabolismo , Fosforilação
7.
Elife ; 112022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170427

RESUMO

Primary ciliary defects cause a group of developmental conditions known as ciliopathies. Here, we provide mechanistic insight into ciliary ubiquitin processing in cells and for mouse model lacking the ciliary protein Mks1. In vivo loss of Mks1 sensitises cells to proteasomal disruption, leading to abnormal accumulation of ubiquitinated proteins. We identified UBE2E1, an E2 ubiquitin-conjugating enzyme that polyubiquitinates ß-catenin, and RNF34, an E3 ligase, as novel interactants of MKS1. UBE2E1 and MKS1 colocalised, and loss of UBE2E1 recapitulates the ciliary and Wnt signalling phenotypes observed during loss of MKS1. Levels of UBE2E1 and MKS1 are co-dependent and UBE2E1 mediates both regulatory and degradative ubiquitination of MKS1. We demonstrate that processing of phosphorylated ß-catenin occurs at the ciliary base through the functional interaction between UBE2E1 and MKS1. These observations suggest that correct ß-catenin levels are tightly regulated at the primary cilium by a ciliary-specific E2 (UBE2E1) and a regulatory substrate-adaptor (MKS1).


Assuntos
Ciliopatias/metabolismo , Proteínas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Via de Sinalização Wnt , Animais , Cílios/metabolismo , Humanos , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , beta Catenina/metabolismo
8.
Biochem J ; 478(15): 2977-2997, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34259310

RESUMO

SBI-0206965, originally identified as an inhibitor of the autophagy initiator kinase ULK1, has recently been reported as a more potent and selective AMP-activated protein kinase (AMPK) inhibitor relative to the widely used, but promiscuous inhibitor Compound C/Dorsomorphin. Here, we studied the effects of SBI-0206965 on AMPK signalling and metabolic readouts in multiple cell types, including hepatocytes, skeletal muscle cells and adipocytes. We observed SBI-0206965 dose dependently attenuated AMPK activator (991)-stimulated ACC phosphorylation and inhibition of lipogenesis in hepatocytes. SBI-0206965 (≥25 µM) modestly inhibited AMPK signalling in C2C12 myotubes, but also inhibited insulin signalling, insulin-mediated/AMPK-independent glucose uptake, and AICA-riboside uptake. We performed an extended screen of SBI-0206965 against a panel of 140 human protein kinases in vitro, which showed SBI-0206965 inhibits several kinases, including members of AMPK-related kinases (NUAK1, MARK3/4), equally or more potently than AMPK or ULK1. This screen, together with molecular modelling, revealed that most SBI-0206965-sensitive kinases contain a large gatekeeper residue with a preference for methionine at this position. We observed that mutation of the gatekeeper methionine to a smaller side chain amino acid (threonine) rendered AMPK and ULK1 resistant to SBI-0206965 inhibition. These results demonstrate that although SBI-0206965 has utility for delineating AMPK or ULK1 signalling and cellular functions, the compound potently inhibits several other kinases and critical cellular functions such as glucose and nucleoside uptake. Our study demonstrates a role for the gatekeeper residue as a determinant of the inhibitor sensitivity and inhibitor-resistant mutant forms could be exploited as potential controls to probe specific cellular effects of SBI-0206965.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Benzamidas/farmacologia , Pirimidinas/farmacologia , Proteínas Recombinantes/metabolismo , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Benzamidas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Pirimidinas/metabolismo , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Sci Signal ; 12(594)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409758

RESUMO

The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.


Assuntos
Enzimas/classificação , Enzimas/genética , Evolução Molecular , Transdução de Sinais/genética
10.
Nature ; 570(7760): 194-199, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142841

RESUMO

Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions that are essential for amino acid and nucleotide metabolism, and uses pyridoxal-5'-phosphate (PLP) as a cofactor. Apo SHMT2 exists as a dimer with unknown functions, whereas PLP binding stabilizes the active tetrameric state. SHMT2 also promotes inflammatory cytokine signalling by interacting with the deubiquitylating BRCC36 isopeptidase complex (BRISC), although it is unclear whether this function relates to metabolism. Here we present the cryo-electron microscopy structure of the human BRISC-SHMT2 complex at a resolution of 3.8 Å. BRISC is a U-shaped dimer of four subunits, and SHMT2 sterically blocks the BRCC36 active site and inhibits deubiquitylase activity. Only the inactive SHMT2 dimer-and not the active PLP-bound tetramer-binds and inhibits BRISC. Mutations in BRISC that disrupt SHMT2 binding impair type I interferon signalling in response to inflammatory stimuli. Intracellular levels of PLP regulate the interaction between BRISC and SHMT2, as well as inflammatory cytokine responses. These data reveal a mechanism in which metabolites regulate deubiquitylase activity and inflammatory signalling.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Interferon Tipo I/imunologia , Complexos Multienzimáticos/imunologia , Complexos Multienzimáticos/metabolismo , Transdução de Sinais/imunologia , Microscopia Crioeletrônica , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/ultraestrutura , Glicina Hidroximetiltransferase/ultraestrutura , Células HEK293 , Humanos , Inflamação/imunologia , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Fosfato de Piridoxal/metabolismo
11.
Nat Med ; 24(9): 1395-1406, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150719

RESUMO

Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P2), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects.


Assuntos
Frutose-Bifosfatase/metabolismo , Glucose/biossíntese , Fígado/enzimologia , Metformina/farmacologia , Monofosfato de Adenosina/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Sequência de Bases , Galinhas , Modelos Animais de Doenças , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Intolerância à Glucose/patologia , Homeostase/efeitos dos fármacos , Humanos , Hipoglicemia/patologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutação/genética , Obesidade/patologia , Pró-Fármacos/química , Ribonucleotídeos/farmacologia
12.
Biochem Soc Trans ; 46(2): 453-466, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29472364

RESUMO

The ubiquitin (Ub) proteasome system and Ub signalling networks are crucial to cell biology and disease development. Deubiquitylases (DUBs) control cell signalling by removing mono-Ub and polyubiquitin chains from substrates. DUBs take part in almost all processes that regulate cellular life and are frequently dysregulated in disease. We have catalogued 99 currently known DUBs in the human genome and sequence conservation analyses of catalytic residues suggest that 11 lack enzyme activity and are classed as pseudo-DUBs. These pseudoenzymes play important biological roles by allosterically activating catalytically competent DUBs as well as other active enzymes. Additionally, pseudoenzymes act as assembly scaffolds of macromolecular complexes. We discuss how pseudo-DUBs have lost their catalytic activity, their diverse mechanisms of action and their potential as therapeutic targets. Many known pseudo-DUBs play crucial roles in cell biology and it is likely that unstudied and overlooked pseudo-DUB genes will have equally important functions.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Regulação Alostérica , Domínio Catalítico
13.
Mol Cell ; 59(6): 970-83, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26344097

RESUMO

BRCC36 is a Zn(2+)-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN(+) domain protein BRCC36 associates with pseudo DUB MPN(-) proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. To understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer of heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. These data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function.


Assuntos
Formigas/enzimologia , Proteínas de Insetos/química , Proteínas Associadas à Matriz Nuclear/química , Proteases Específicas de Ubiquitina/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Enzimas Desubiquitinantes , Células HEK293 , Células HeLa , Humanos , Proteínas de Insetos/fisiologia , Cinética , Proteínas de Membrana/química , Modelos Moleculares , Proteínas Associadas à Matriz Nuclear/fisiologia , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteases Específicas de Ubiquitina/fisiologia
14.
Mol Aspects Med ; 46: 63-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26278983

RESUMO

Glycogen is a polymer of glucose that serves as a major energy reserve in eukaryotes. It is synthesized through the cooperative action of glycogen synthase (GS), glycogenin (GN) and glycogen branching enzyme. GN initiates the first enzymatic step in the glycogen synthesis process by self glucosylation of a short 8-12 glucose residue primer. After interacting with GN, GS then extends this sugar primer to form glycogen particles of different sizes. We discuss recent developments in the structural biology characterization of GS and GN enzymes, which have contributed to a better understanding of how the two proteins interact and how they collaborate to synthesize glycogen particles.


Assuntos
Glucosiltransferases/metabolismo , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Glicosilação , Humanos
15.
Protein Expr Purif ; 108: 23-29, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25527037

RESUMO

We report the successful expression and purification of functional human muscle glycogen synthase (GYS1) in complex with human glycogenin-1 (GN1). Stoichiometric GYS1:GN1 complex was produced by co-expression of GYS1 and GN1 using a bicistronic pFastBac™-Dual expression vector, followed by affinity purification and subsequent size-exclusion chromatography. Mass spectrometry analysis identified that GYS1 is phosphorylated at several well-characterised and uncharacterised Ser/Thr residues. Biochemical analysis, including activity ratio (in the absence relative to that in the presence of glucose-6-phosphate) measurement, covalently attached phosphate estimation as well as phosphatase treatment, revealed that recombinant GYS1 is substantially more heavily phosphorylated than would be observed in intact human or rodent muscle tissues. A large quantity of highly-pure stoichiometric GYS1:GN1 complex will be useful to study its structural and biochemical properties in the future, which would reveal mechanistic insights into its functional role in glycogen biosynthesis.


Assuntos
Expressão Gênica , Glucosiltransferases , Glicogênio Sintase , Glicoproteínas , Complexos Multienzimáticos , Animais , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Glicogênio Sintase/biossíntese , Glicogênio Sintase/genética , Glicogênio Sintase/isolamento & purificação , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Humanos , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Spodoptera
16.
Proc Natl Acad Sci U S A ; 111(28): E2831-40, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982189

RESUMO

Glycogen is a primary form of energy storage in eukaryotes that is essential for glucose homeostasis. The glycogen polymer is synthesized from glucose through the cooperative action of glycogen synthase (GS), glycogenin (GN), and glycogen branching enzyme and forms particles that range in size from 10 to 290 nm. GS is regulated by allosteric activation upon glucose-6-phosphate binding and inactivation by phosphorylation on its N- and C-terminal regulatory tails. GS alone is incapable of starting synthesis of a glycogen particle de novo, but instead it extends preexisting chains initiated by glycogenin. The molecular determinants by which GS recognizes self-glucosylated GN, the first step in glycogenesis, are unknown. We describe the crystal structure of Caenorhabditis elegans GS in complex with a minimal GS targeting sequence in GN and show that a 34-residue region of GN binds to a conserved surface on GS that is distinct from previously characterized allosteric and binding surfaces on the enzyme. The interaction identified in the GS-GN costructure is required for GS-GN interaction and for glycogen synthesis in a cell-free system and in intact cells. The interaction of full-length GS-GN proteins is enhanced by an avidity effect imparted by a dimeric state of GN and a tetrameric state of GS. Finally, the structure of the N- and C-terminal regulatory tails of GS provide a basis for understanding phosphoregulation of glycogen synthesis. These results uncover a central molecular mechanism that governs glycogen metabolism.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/enzimologia , Glucosiltransferases , Glicogênio Sintase , Glicoproteínas , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Livre de Células , Células Cultivadas , Cristalografia por Raios X , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio/biossíntese , Glicogênio/química , Glicogênio/genética , Glicogênio Sintase/química , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Camundongos , Camundongos Knockout , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
17.
Mol Cell ; 53(2): 221-34, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462203

RESUMO

RNase L is an ankyrin repeat domain-containing dual endoribonuclease-pseudokinase that is activated by unusual 2,'5'-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon-regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small-angle X-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the nonhydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain, together with nucleotide binding, imposes a rigid intertwined dimer configuration that is essential for RNase catalytic and antiviral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold.


Assuntos
Nucleotídeos de Adenina/química , Endorribonucleases/química , Oligorribonucleotídeos/química , Difosfato de Adenosina/química , Adenilil Imidodifosfato/química , Animais , Repetição de Anquirina , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Vírus da Encefalomiocardite , Endorribonucleases/genética , Endorribonucleases/fisiologia , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Picornaviridae , Estrutura Terciária de Proteína , Espalhamento de Radiação , Relação Estrutura-Atividade , Sus scrofa
18.
Mol Cell Biol ; 34(3): 362-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24248594

RESUMO

IpaH proteins are bacterium-specific E3 enzymes that function as type three secretion system (T3SS) effectors in Salmonella, Shigella, and other Gram-negative bacteria. IpaH enzymes recruit host substrates for ubiquitination via a leucine-rich repeat (LRR) domain, which can inhibit the catalytic domain in the absence of substrate. The basis for substrate recognition and the alleviation of autoinhibition upon substrate binding is unknown. Here, we report the X-ray structure of Salmonella SspH1 in complex with human PKN1. The LRR domain of SspH1 interacts specifically with the HR1b coiled-coil subdomain of PKN1 in a manner that sterically displaces the catalytic domain from the LRR domain, thereby activating catalytic function. SspH1 catalyzes the ubiquitination and proteasome-dependent degradation of PKN1 in cells, which attenuates androgen receptor responsiveness but not NF-κB activity. These regulatory features are conserved in other IpaH-substrate interactions. Our results explain the mechanism whereby substrate recognition and enzyme autoregulation are coupled in this class of bacterial ubiquitin ligases.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Quinase C/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Immunoblotting , Modelos Moleculares , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteína Quinase C/química , Proteína Quinase C/genética , Estrutura Terciária de Proteína , Receptores Androgênicos/metabolismo , Salmonella/genética , Salmonella/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
19.
Science ; 339(6119): 590-5, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23287719

RESUMO

The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.


Assuntos
Técnicas de Química Combinatória , Endopeptidases/metabolismo , Inibidores de Proteases/isolamento & purificação , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Sequência de Aminoácidos , Sequência Conservada , Desenho de Fármacos , Endopeptidases/química , Células HEK293 , Humanos , Dados de Sequência Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Estrutura Secundária de Proteína , Bibliotecas de Moléculas Pequenas , Ubiquitina/química , Ubiquitina/genética , Ubiquitina Tiolesterase/química , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
20.
Cell Signal ; 24(11): 2085-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22796189

RESUMO

PCTAIRE-1 (cyclin-dependent kinase [CDK] 16) is a highly conserved serine/threonine kinase that belongs to the CDK family of protein kinases. Little is known regarding PCTAIRE-1 regulation and function and no robust assay exists to assess PCTAIRE-1 activity mainly due to a lack of information regarding its preferred consensus motif and the lack of bona fide substrates. We used positional scanning peptide library technology and identified the substrate-specificity requirements of PCTAIRE-1 and subsequently elaborated a peptide substrate termed PCTAIRE-tide. Recombinant PCTAIRE-1 displayed vastly improved enzyme kinetics on PCTAIRE-tide compared to a widely used generic CDK substrate peptide. PCTAIRE-tide also greatly improved detection of endogenous PCTAIRE-1 activity. Similar to other CDKs, PCTAIRE-1 requires a proline residue immediately C-terminal to the phosphoacceptor site (+1) for optimal activity. PCTAIRE-1 has a unique preference for a basic residue at +4, but not at +3 position (a key characteristic for CDKs). We also demonstrate that PCTAIRE-1 binds to a novel cyclin family member, cyclin Y, which increased PCTAIRE-1 activity towards PCTAIRE-tide >100-fold. We hypothesised that cyclin Y binds and activates PCTAIRE-1 in a way similar to which cyclin A2 binds and activates CDK2. Point mutants of cyclin Y predicted to disrupt PCTAIRE-1-cyclin Y binding severely prevented complex formation and activation of PCTAIRE-1. We have identified PCTAIRE-tide as a powerful tool to study the regulation of PCTAIRE-1. Our understanding of the molecular interaction between PCTAIRE-1 and cyclin Y further facilitates future investigation of the functions of PCTAIRE-1 kinase.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Células HEK293 , Humanos , Cinética , Mutação , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA