Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1862(3): 183173, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883997

RESUMO

Micro Exon Gene (MEG) proteins are thought to play major roles in the infection and survival of parasitic Schistosoma mansoni worms in host organisms. Here, the physical chemical properties of two small MEG proteins found in the genome of S. mansoni, named MEG-24 and MEG-27, were examined by a combination of biophysical techniques such as differential scanning calorimetry, tensiometry, circular dichroism, fluorescence, and electron spin resonance spectroscopies. The proteins are surface active and structurally arranged as cationic amphipathic α-helices that can associate with lipid membranes and cause their disruption. Upon adsorption to lipid membranes, MEG-27 strongly affects the fluidity of erythrocyte ghost membranes, whereas MEG-24 forms pores in erythrocytes without modifying the ghost membrane fluidity. Whole-mount in situ hybridization experiments indicates that MEG-27 and MEG-24 transcripts are located in the parasite esophagus and subtegumental cells, respectively, suggesting a relevant role of these proteins in the host-parasite interface. Taken together, these characteristics lead us to propose that these MEG proteins may interact with host cell membranes and potentially modulate the immune process using a similar mechanism as that described for α-helical membrane-active peptides.


Assuntos
Éxons/genética , Membranas/química , Schistosoma mansoni/genética , Sequência de Aminoácidos , Animais , Varredura Diferencial de Calorimetria/métodos , Dicroísmo Circular/métodos , Peptídeos/química , Conformação Proteica em alfa-Hélice , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/genética , Esquistossomose mansoni/metabolismo
2.
J Biol Chem ; 292(26): 10899-10911, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28476887

RESUMO

Septins are filament-forming GTP-binding proteins involved in many essential cellular events related to cytoskeletal dynamics and maintenance. Septins can self-assemble into heterocomplexes, which polymerize into highly organized, cell membrane-interacting filaments. The number of septin genes varies among organisms, and although their structure and function have been thoroughly studied in opisthokonts (including animals and fungi), no structural studies have been reported for other organisms. This makes the single septin from Chlamydomonas (CrSEPT) a particularly attractive model for investigating whether functional homopolymeric septin filaments also exist. CrSEPT was detected at the base of the flagella in Chlamydomonas, suggesting that CrSEPT is involved in the formation of a membrane-diffusion barrier. Using transmission electron microscopy, we observed that recombinant CrSEPT forms long filaments with dimensions comparable with those of the canonical structure described for opisthokonts. The GTP-binding domain of CrSEPT purified as a nucleotide-free monomer that hydrolyzes GTP and readily binds its analog guanosine 5'-3-O-(thio)triphosphate. We also found that upon nucleotide binding, CrSEPT formed dimers that were stabilized by an interface involving the ligand (G-interface). Across this interface, one monomer supplied a catalytic arginine to the opposing subunit, greatly accelerating the rate of GTP hydrolysis. This is the first report of an arginine finger observed in a septin and suggests that CrSEPT may act as its own GTP-activating protein. The finger is conserved in all algal septin sequences, suggesting a possible correlation between the ability to form homopolymeric filaments and the accelerated rate of hydrolysis that it provides.


Assuntos
Chlamydomonas reinhardtii/química , Complexos Multiproteicos/química , Proteínas de Plantas/química , Multimerização Proteica , Septinas/química , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Septinas/genética , Septinas/metabolismo
3.
Int J Parasitol ; 44(8): 523-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24768753

RESUMO

Septins are guanosine-5'-triphosphate-binding proteins involved in wide-ranging cellular processes including cytokinesis, vesicle trafficking, membrane remodelling and scaffolds, and with diverse binding partners. Precise roles for these structural proteins in most processes often remain elusive. Identification of small molecules that inhibit septins could aid in elucidating the functions of septins and has become increasingly important, including the description of roles for septins in pathogenic phenomena such as tumorigenesis. The plant growth regulator forchlorfenuron, a synthetic cytokinin known to inhibit septin dynamics, likely represents an informative probe for septin function. This report deals with septins of the human blood fluke Schistosoma mansoni and their interactions with forchlorfenuron. Recombinant forms of three schistosome septins, SmSEPT5, SmSEPT7.2 and SmSEPT10, interacted with forchlorfenuron, leading to rapid polymerization of filaments. Culturing developmental stages (miracidia, cercariae, adult males) of schistosomes in FCF at 50-500 µM rapidly led to paralysis, which was reversible upon removal of the cytokinin. The reversible paralysis was concentration-, time- and developmental stage-dependent. Effects of forchlorfenuron on the cultured schistosomes were monitored by video and/or by an xCELLigence-based assay of motility, which quantified the effect of forchlorfenuron on fluke motility. The findings implicated a mechanism targeting a molecular system controlling movement in these developmental stages: a direct effect on muscle contraction due to septin stabilization might be responsible for the reversible paralysis, since enrichment of septins has been described within the muscles of schistosomes. This study revealed the reversible effect of forchlorfenuron on both schistosome motility and its striking impact in hastening polymerization of septins. These novel findings suggested routes to elucidate roles for septins in this pathogen, and exploitation of derivatives of forchlorfenuron for anti-schistosomal drugs.


Assuntos
Anti-Helmínticos/farmacologia , Paralisia/induzido quimicamente , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Septinas/antagonistas & inibidores , Animais , Citocininas/farmacologia
4.
J Biol Chem ; 289(11): 7799-811, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24464615

RESUMO

Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.


Assuntos
Schistosoma mansoni/química , Septinas/química , Animais , Sítios de Ligação , Calorimetria , Catálise , Membrana Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Hidrólise , Magnésio/química , Espectroscopia de Ressonância Magnética , Nucleotídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Termodinâmica , Água/química
5.
PLoS Negl Trop Dis ; 7(12): e2602, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367716

RESUMO

Septins are a family of eukaryotic GTP binding proteins conserved from yeasts to humans. Originally identified in mutants of budding yeast, septins participate in diverse cellular functions including cytokinesis, organization of actin networks, cell polarity, vesicle trafficking and many others. Septins assemble into heteroligomers to form filaments and rings. Here, four septins of Schistosoma mansoni are described, which appear to be conserved within the phylum Platyhelminthes. These orthologues were related to the SEPT5, SEPT10 and SEPT7 septins of humans, and hence we have termed the schistosome septins SmSEPT5, SmSEPT10, SmSEPT7.1 and SmSEPT7.2. Septin transcripts were detected throughout the developmental cycle of the schistosome and a similar expression profile was observed for septins in the stages examined, consistent with concerted production of these proteins to form heterocomplexes. Immunolocalization analyses undertaken with antibodies specific for SmSEPT5 and SmSEPT10 revealed a broad tissue distribution of septins in the schistosomulum and colocalization of septin and actin in the longitudinal and circular muscles of the sporocyst. Ciliated epidermal plates of the miracidium were rich in septins. Expression levels for these septins were elevated in germ cells in the miracidium and sporocyst. Intriguingly, septins colocalize with the protonephridial system of the cercaria, which extends laterally along the length of this larval stage. Together, the findings revealed that schistosomes expressed several septins which likely form filaments within the cells, as in other eukaryotes. Identification and localization demonstrating a broad distribution of septins across organs and tissues of schistosome contributes towards the understanding of septins in schistosomes and other flatworms.


Assuntos
Regulação da Expressão Gênica , Schistosoma mansoni/enzimologia , Schistosoma mansoni/crescimento & desenvolvimento , Septinas/biossíntese , Estruturas Animais/química , Animais , Sequência Conservada , Perfilação da Expressão Gênica , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Filogenia , Schistosoma mansoni/genética , Septinas/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA