Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 236: 119956, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37087917

RESUMO

Cavitation is a potentially useful phenomenon accompanied by extreme conditions, which is one of the reasons for its increased use in a variety of applications, such as surface cleaning, enhanced chemistry, and water treatment. Yet, we are still not able to answer many fundamental questions related to efficacy and effectiveness of cavitation treatment, such as: "Can single bubbles destroy contaminants?" and "What precisely is the mechanism behind bubble's cleaning power?". For these reasons, the present paper addresses cavitation as a tool for eradication and removal of wall-bound bacteria at a fundamental level of a single microbubble and a bacterial cell. We present a method to study bubble-bacteria interaction on a nano- to microscale resolution in both space and time. The method allows for accurate and fast positioning of a single microbubble above the individual wall-bound bacterial cell with optical tweezers and triggering of a violent microscale cavitation event, which either results in mechanical removal or destruction of the bacterial cell. Results on E. coli bacteria show that only cells in the immediate vicinity of the microbubble are affected, and that a very high likelihood of cell detachment and cell death exists for cells located directly under the center of a bubble. Further details behind near-wall microbubble dynamics are revealed by numerical simulations, which demonstrate that a water jet resulting from a near-wall bubble implosion is the primary mechanism of wall-bound cell damage. The results suggest that peak hydrodynamic forces as high as 0.8 µN and 1.2 µN are required to achieve consistent E. coli bacterial cell detachment or death with high frequency mechanical perturbations on a nano- to microsecond time scale. Understanding of the cavitation phenomenon at a fundamental level of a single bubble will enable further optimization of novel water treatment and surface cleaning technologies to provide more efficient and chemical-free processes.


Assuntos
Escherichia coli , Purificação da Água , Hidrodinâmica , Bactérias , Microbolhas
2.
Ultrason Sonochem ; 95: 106400, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060711

RESUMO

The COVID -19 pandemic reminded us that we need better contingency plans to prevent the spread of infectious agents and the occurrence of epidemics or pandemics. Although the transmissibility of SARS-CoV-2 in water has not been confirmed, there are studies that have reported on the presence of infectious coronaviruses in water and wastewater samples. Since standard water treatments are not designed to eliminate viruses, it is of utmost importance to explore advanced treatment processes that can improve water treatment and help inactivate viruses when needed. This is the first study to investigate the effects of hydrodynamic cavitation on the inactivation of bacteriophage phi6, an enveloped virus used as a SARS-CoV-2 surrogate in many studies. In two series of experiments with increasing and constant sample temperature, virus reduction of up to 6.3 logs was achieved. Inactivation of phi6 at temperatures of 10 and 20 °C occurs predominantly by the mechanical effect of cavitation and results in a reduction of up to 4.5 logs. At 30 °C, the reduction increases to up to 6 logs, where the temperature-induced increased susceptibility of the viral lipid envelope makes the virus more prone to inactivation. Furthermore, the control experiments without cavitation showed that the increased temperature alone is not sufficient to cause inactivation, but that additional mechanical stress is still required. The RNA degradation results confirmed that virus inactivation was due to the disrupted lipid bilayer and not to RNA damage. Hydrodynamic cavitation, therefore, has the potential to inactivate current and potentially emerging enveloped pathogenic viruses in water at lower, environmentally relevant temperatures.


Assuntos
Bacteriófagos , COVID-19 , Vírus , Humanos , Hidrodinâmica , Inativação de Vírus , SARS-CoV-2
3.
Ultrason Sonochem ; 89: 106159, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36099775

RESUMO

Acoustic cavitation, generated by a piezo-driven transducer, is a commonly used technique in a variety of processes, from homogenization, emulsification, and intensification of chemical reactions to surface cleaning and wastewater treatment. An ultrasonic horn, the most commonly used acoustic cavitation device, creates unique cavitation conditions under the horn tip that depend on various parameters such as the tip diameter, the driving frequency of the horn, its amplitude, and fluid properties. Unlike for hydrodynamic cavitation, the scaling laws for acoustic cavitation are poorly understood. Empirical relationships between cavitation dynamics, ultrasonic horn operating conditions, and fluid properties were found through systematic characterization of cavitation under the tip. Experiments were conducted in distilled water with various sodium chloride salt concentrations under different horn amplitudes, tip geometries, and ambient pressures. Cavitation characteristics were monitored by high-speed (200,000 fps) imaging, and numerous relations were found between operating conditions and cavitation dynamics. The compared results are discussed along with a proposal of a novel acoustic cavitation parameter and its relationship to the size of the cavitation cloud under the horn tip. Similar to the classical hydrodynamic cavitation number, the authors propose for the first time an acoustic cavitation parameter based on experimental results.


Assuntos
Cloreto de Sódio , Ultrassom , Acústica , Transdutores , Água
4.
Ultrason Sonochem ; 87: 106053, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35690044

RESUMO

Numerous studies have already shown that the process of cavitation can be successfully used for water treatment and eradication of bacteria. However, most of the relevant studies are being conducted on a macro scale, so the understanding of the processes at a fundamental level remains poor. In attempt to further elucidate the process of cavitation-assisted water treatment on a scale of a single bubble, the present paper numerically addresses interaction between a collapsing microbubble and a nearby compliant structure, that mechanically and structurally resembles a bacterial cell. A fluid-structure interaction methodology is employed, where compressible multiphase flow is considered and the bacterial cell wall is modeled as a multi-layered shell structure. Simulations are performed for two selected model structures, each resembling the main structural features of Gram-negative and Gram-positive bacterial cell envelopes. The contribution of two independent dimensionless geometric parameters is investigated, namely the bubble-cell distance δ and their size ratio ς. Three characteristic modes of bubble collapse dynamics and four modes of spatiotemporal occurrence of peak local stresses in the bacterial cell membrane are identified throughout the parameter space considered. The former range from the development of a weak and thin jet away from the cell to spherical bubble collapses. The results show that local stresses arising from bubble-induced loads can exceed poration thresholds of cell membranes and that bacterial cell damage could be explained solely by mechanical effects in absence of thermal and chemical ones. Based on this, the damage potential of a single microbubble for bacteria eradication is estimated, showing a higher resistance of the Gram-positive model organism to the nearby bubble collapse. Microstreaming is identified as the primary mechanical mechanism of bacterial cell damage, which in certain cases may be enhanced by the occurrence of shock waves during bubble collapse. The results are also discussed in the scope of bacteria eradication by cavitation treatment on a macro scale, where processes of hydrodynamic and ultrasonic cavitation are being employed.


Assuntos
Microbolhas , Ultrassom , Membrana Celular , Hidrodinâmica
5.
Ultrason Sonochem ; 78: 105706, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411844

RESUMO

Hydrodynamic cavitation poses as a promising new method for wastewater treatment as it has been shown to be able to eradicate bacteria, inactivate viruses, and destroy other biological structures, such as liposomes. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What exactly are the damaging mechanisms of hydrodynamic cavitation in various applications? In this light, the present paper numerically addresses the interaction between a single cavitation microbubble and a nearby lipid vesicle of a similar size. A coupled fluid-structure interaction model is employed, from which three critical modes of vesicle deformation are identified and temporally placed in relation to their corresponding driving mechanisms: (a) unilateral stretching at the waist of the liposome during the first bubble collapse and subsequent shock wave propagation, (b) local wrinkling at the tip until the bubble rebounds, and (c) bilateral stretching at the tip of the liposome during the phase of a second bubble contraction. Here, unilateral and bilateral stretching refer to the local in-plane extension of the bilayer in one and both principal directions, respectively. Results are discussed with respect to critical dimensionless distance for vesicle poration and rupture. Liposomes with initially equilibrated envelopes are not expected to be structurally compromised in cases with δ>1.0, when a nearby collapsing bubble is not in their direct contact. However, the critical dimensionless distance for the case of an envelope with pre-existing pores is identified at δ=1.9. Additionally, the influence of liposome-bubble size ratio is addressed, from which a higher potential of larger bubbles for causing stretching-induced liposome destruction can be identified.


Assuntos
Microbolhas , Hidrodinâmica , Lipossomos , Vírus
6.
Ultrason Sonochem ; 69: 105252, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32682313

RESUMO

Cavitation bubble collapse close to a submerged sphere on a microscale is investigated numerically using a finite volume method in order to determine the likelihood of previously suspected mechanical effects to cause bacterial cell damage, such as impact of a high speed water jet, propagation of bubble emitted shock waves, shear loads, and thermal loads. A grid convergence study and validation of the employed axisymmetric numerical model against the Gilmore's equation is performed for a case of a single microbubble collapse due to a sudden ambient pressure increase. Numerical simulations of bubble-sphere interaction corresponding to different values of nondimensional bubble-sphere standoff distance δ and their size ratio ε are carried out. The obtained results show vastly different bubble collapse dynamics across the considered parameter space, from the development of a fast thin annular jet towards the sphere to an almost spherical bubble collapse. Although some similarities in bubble shape progression to previous studies on larger bubbles exist, it can be noticed that bubble jetting is much less likely to occur on the considered scale due to the cushioning effects of surface tension on the intensity of the collapse. Overall, the results show that the mechanical loads on a spherical particle tend to increase with a sphere-bubble size ratio ε, and decrease with their distance δ. Additionally, the results are discussed with respect to bacteria eradication by hydrodynamic cavitation. Potentially harmful mechanical effects of bubble-sphere interaction on a micro scale are identified, namely the collapse-induced shear loads with peaks of a few megapascals and propagation of bubble emitted shock waves, which could cause spatially highly variable compressive loads with peaks of a few hundred megapascals and gradients of 100 MPa/µm.

7.
Ultrason Sonochem ; 68: 105224, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32554294

RESUMO

The initial motivation for the study was to gain deeper understanding into the background of emulsion preparation by ultrasound (cavitation). In our previous work (Perdih et al., 2019) we observed rich phenomena occurring near the liquid-liquid interface which was exposed to ultrasonic cavitation. Although numerous studies of bubble dynamics in different environments (presence of free surface, solid body, shear flow and even variable gravity field) exist, one can find almost no reports on the interaction of a bubble with a liquid-liquid interface. In the present work we conducted a number of experiments where single cavitation bubble dynamics was observed on each side of the oil-water interface. These were accompanied by corresponding simulations. We investigated the details of bubble interface interaction (deformation, penetration). As predicted, by the anisotropy parameter the bubble always jets toward the interface if it grows in the lighter liquid and correspondingly away from the interface if it is initiated inside the denser liquid. We extended the analysis to the relationships of various bubble characteristics and the anisotropy parameter. Finally, based on the present and our previous study (Perdih et al., 2019), we offer new insights into the physics of ultrasonic emulsification process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA