Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 19493-19503, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708253

RESUMO

Hydrogen sulfide (H2S) is a very toxic, acidic, and odorous gas. In this study, a calcined zeolite was used to investigate the adsorption performance of H2S. Among particle size, calcination temperature and time calcination temperature and time had significant effects on the adsorption capacity of H2S on the zeolite. The optimal calcination conditions for the zeolite were 332 °C, 1.8 h, and 10-20 mm size, and the maximum adsorption capacity of H2S was approximately 6219 mg kg-1. Calcination could broaden the channels, remove the adsorbed gases and impurities on the surface of zeolites, and increase the average pore size and point of zero net charge. As the zeolite adsorbed to saturation, it could be regenerated at the temperatures between 200 and 350 °C for 0.5 h. Compared with the natural zeolite, the adsorption capacities of dimethyl disulfide, dimethyl sulfide, toluene, CH3SH, CS2, CO2, and H2S were significantly higher on the calcined zeolite, while the adsorption capacity of CH4 was lower on the calcined zeolite. A gas treatment system by a temperature swing adsorption-regeneration process on honeycomb rotors with calcined zeolites was proposed. These findings are helpful for developing techniques for removing gas pollutants such as volatile sulfur compounds and volatile organic compounds to purify biogas and to limited toxic concentrations in the working environment.

2.
Environ Sci Pollut Res Int ; 31(17): 26141-26152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491241

RESUMO

Agricultural wastes, comprising cotton straw and livestock manure, can be effectively managed through aerobic co-composting. Nevertheless, the quality and microbial characteristics of co-composting products from different sources remain unclear. Therefore, this study utilized livestock manure from various sources in Xinjiang, China, including herbivorous sheep manure (G), omnivorous pigeon manure (Y), and pigeon-sheep mixture (GY) alongside cotton stalks, for a 40-day co-composting process. We monitored physicochemical changes, assessed compost characteristics, and investigated fungal community. The results indicate that all three composts met established composting criteria, with compost G exhibiting the fastest microbial growth and achieving the highest quality. Ascomycota emerged as the predominant taxon in three compost products. Remarkably, at the genus level, the biomarker species for G, Y, and GY are Petromyces and Cordyceps, Neurospora, and Neosartorya, respectively. Microorganisms play a pivotal role in organic matter degradation, impacting nutrient composition, demonstrating significant potential for the decomposition and transformation of compost components. Redundancy analysis indicates that potassium, total organic carbon, and C:N are key factors influencing fungal communities. This study elucidates organic matter degradation in co-composting straw and livestock manure diverse sources, optimizing treatment for efficient agricultural waste utilization and sustainable practices.


Assuntos
Compostagem , Micobioma , Animais , Ovinos , Solo/química , Esterco/microbiologia , Gado , Gossypium
3.
Bioresour Technol ; 395: 130393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301942

RESUMO

Hydrothermal carbonization temperature is a key factor in controlling the physico-chemical properties of hydrochar and affecting its function. In this study, effects of hydrochar and Fe-modified hydrochar (Fe-HC) prepared at 180 °C (180C-Fe), 220 °C (220C-Fe) and 260 °C (260C-Fe) on anaerobic digestion (AD) performance of swine manure was investigated. Among the three Fe-HCs, 220C-Fe had the highest amount of Fe and Fe2+ on the surface. The relative methane production of control reached 174 %-189 % in the 180C-Fe and 220C-Fe treatments between days 11 and 12. The degradation efficiency of swine manure was highest in the 220C-Fe treatment (61.3 %), which was 14.8 % higher than in the control. Fe-HC could act as an electron shuttle, stimulate the coenzyme F420 formation, increase the relative abundance of Methanosarcina and promote electron transport for acetotrophic methanogenesis in the AD. These findings are helpful for designing an efficient process for treating swine manure and utilizing digestate.


Assuntos
Esterco , Methanosarcina , Animais , Suínos , Anaerobiose , Temperatura , Transporte de Elétrons , Metano
4.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959508

RESUMO

In this paper, nano-silica particles were prepared from chlorosilane residue liquid using an inverse micro-emulsions system formed from octylphenyl polyoxyethylene ether (TX-100)/n-hexanol/cyclohexane/ammonia. The influence of different reaction conditions on the morphology, particle size, and dispersion of nano-silica particles was investigated via single-factor analysis. When the concentration of chlorosilane residue liquid (0.08 mol/L), hydrophile-lipophilic-balance (HLB) values (10.50), and the concentration of ammonia (0.58 mol/L) were under suitable conditions, the nano-silica particles had a more uniform morphology, smaller particle size, and better dispersion, while the size of the nano-silica particles gradually increased with the increase in the molar ratio of water to surfactant (ω). The prepared nano-silica was characterized through XRD, FT-IR, N2 adsorption/desorption experiments, and TG-DSC analysis. The results showed that the prepared nano-silica was amorphous mesoporous silica, and that the BET specific surface area was 850.5 m2/g. It also had good thermal stability. When the temperature exceeded 1140 °C, the nano-silica underwent a phase transition from an amorphous form to crystalline. This method not only promoted the sustainable development of the polysilicon industry, it also provided new ideas for the protection of the ecological environment, the preparation of environmental functional materials, and the recycling of resources and energy.

5.
J Hazard Mater ; 458: 131798, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336112

RESUMO

Interface oxygen vacancies (OVs) are commonly used to improve the catalytic performance of activators in persulfate-based advanced oxidation processes, but the underlying mechanism was not fully explored. This work reports a facile heat treatment method to regulate OVs in MoO3-x to elucidate the mechanism of peroxymonosulfate (PMS) activated by OVs to degrade 2,4,4-Trichlorobiphenyl (PCB28). Electron spin resonance, free radical quenching, X-ray photoelectron spectroscopy, and Raman spectroscopy confirmed that both reducing Mo species and OVs of MoO3-x surface were responsible for PMS activation. Further experiments and Density Function Theory (DFT) calculation suggest that OVs in MoO3-x induced the formation of superoxide radical (O2•-), and then O2•- was transformed into singlet oxygen (1O2) or mediated PMS activation to generate radicals, which contritbued to 70.2% of PCB28 degradation. The steady-state concentrations of free radical calculated with the kinetics model show that OVs were more favorable to mediate PMS to generate hydroxyl radicals (•OH) under oxic conditions, while reducing Mo species would like to induce PMS to produce sulfate radicals (SO4•-). Overall, this study is dedicated to a new insight into the in-depth mechanism of PMS activation by OVs-rich catalysts and provides a novel strategy for reactive species regulation in PMS based oxidation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA