RESUMO
CONTEXT: Fibrous dysplasia/McCune-Albright syndrome (FD/MAS) is a rare bone and endocrine disorder resulting in fractures, pain, and disability. There are no targeted or effective therapies to alter the disease course. Disease arises from somatic gain-of-function variants at the R201 codon in GNAS, replacing arginine by either cysteine or histidine. The relative pathogenicity of these variants is not fully understood. OBJECTIVE: This work aimed 1) to determine whether the most common GNAS variants (R201C and R201H) are associated with a specific clinical phenotype, and 2) to determine the prevalence of the most common GNAS variants in a large patient cohort. METHODS: This retrospective cross-sectional analysis measured the correlation between genotype and phenotype characterized by clinical, biochemical, and radiographic data. RESULTS: Sixty-one individuals were genotyped using DNA extracted from tissue or circulating cell-free DNA. Twenty-two patients (36.1%) had the R201C variant, and 39 (63.9%) had the R201H variant. FD skeletal disease burden, hypophosphatemia prevalence, fracture incidence, and ambulation status were similar between the 2 groups. There was no difference in the prevalence of endocrinopathies, ultrasonographic gonadal or thyroid abnormalities, or pancreatic involvement. There was a nonsignificant association of cancer with the R201H variant. CONCLUSION: There is no clear genotype-phenotype correlation in patients with the most common FD/MAS pathogenic variants. The predominance of the R201H variant observed in our cohort and reported in the literature indicates it is likely responsible for a larger burden of disease in the overall population of patients with FD/MAS, which may have important implications for the future development of targeted therapies.
Assuntos
Cromograninas/genética , Displasia Fibrosa Óssea/genética , Displasia Fibrosa Poliostótica/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Estudos Transversais , Feminino , Displasia Fibrosa Óssea/epidemiologia , Displasia Fibrosa Óssea/patologia , Displasia Fibrosa Poliostótica/epidemiologia , Displasia Fibrosa Poliostótica/patologia , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Mutação de Sentido Incorreto , Prevalência , Estudos Retrospectivos , Índice de Gravidade de Doença , Adulto JovemRESUMO
Fibrous dysplasia is an uncommon mosaic disorder in which bone is replaced by structurally unsound fibro-osseous tissue. It is caused by the sporadic post-zygotic activating mutations in GNAS, resulting in dysregulated GαS-protein signaling in affected tissues. This manifests on a broad clinical spectrum ranging from insignificant solitary lesions to severe disease with deformities, fractures, functional impairment, and pain. Fibrous dysplasia may present in isolation or in association with hyperfunctioning endocrinopathies and café-au-lait macules, known as McCune-Albright Syndrome. This review summarizes the current understanding of pathophysiology in fibrous dysplasia, describes key pre-clinical and clinical investigations, and details the current approach to diagnosis and management.
Assuntos
Displasia Fibrosa Poliostótica/diagnóstico , Displasia Fibrosa Poliostótica/genética , Mutação , Animais , Osso e Ossos/patologia , Manchas Café com Leite , Doenças das Cartilagens , Transformação Celular Neoplásica , Cromograninas/genética , Progressão da Doença , Fator de Crescimento de Fibroblastos 23 , Displasia Fibrosa Óssea , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Humanos , Interleucina-6/genética , Transdução de Sinais , Dermatopatias/complicações , Pesquisa Translacional BiomédicaRESUMO
The ESCRT (endosomal sorting complex required for transport) complexes and associated proteins mediate membrane scission reactions, such as multivesicular body formation, the terminal stages of cytokinesis and retroviral particle release. These proteins are believed to be sequentially recruited to the site of membrane scission, and then complexes are disassembled by the ATPase Vps4A. However, these events have never been observed in living cells, and their dynamics are unknown. By quantifying the recruitment of several ESCRT and associated proteins during the assembly of two retroviruses, we show that Alix progressively accumulated at viral assembly sites, coincident with the accumulation of the main viral structural protein, Gag, and was not recycled after assembly. In contrast, ESCRT-III and Vps4A were transiently recruited only when the accumulation of Gag was complete. These data indicate that the rapid and transient recruitment of proteins that act late in the ESCRT pathway and carry out membrane fission is triggered by prior and progressive accumulation of proteins that bridge viral proteins and the late-acting ESCRT proteins.
Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Retroviridae/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Montagem de Vírus , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , HIV-1/fisiologia , HIV-1/ultraestrutura , Células HeLa , Humanos , Vírus da Anemia Infecciosa Equina/fisiologia , Vírus da Anemia Infecciosa Equina/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retroviridae/ultraestruturaRESUMO
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.
Assuntos
Ubiquitinas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Repetição de Anquirina/genética , Repetição de Anquirina/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Coenzimas/genética , Coenzimas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Produtos do Gene gag/química , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Spumavirus/metabolismo , Spumavirus/fisiologia , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Proteínas Virais/genética , Proteínas Virais/fisiologia , Liberação de Vírus/genéticaRESUMO
The expression of many putative antiviral genes is upregulated when cells encounter type I interferon (IFN), but the actual mechanisms by which many IFN-induced gene products inhibit virus replication are poorly understood. A recently identified IFN-induced antiretroviral protein, termed tetherin (previously known as BST-2 or CD317), blocks the release of nascent human immunodeficiency virus type 1 (HIV-1) particles from infected cells, and an HIV-1 accessory protein, Vpu, acts as a viral antagonist of tetherin. Here, we show that tetherin is capable of blocking not only the release of HIV-1 particles but also the release of particles assembled using the major structural proteins of a variety of prototype retroviruses, including members of the alpharetrovirus, betaretrovirus, deltaretrovirus, lentivirus, and spumaretrovirus families. Moreover, we show that the release of particles assembled using filovirus matrix proteins from Marburg virus and Ebola virus is also sensitive to inhibition by tetherin. These findings indicate that tetherin is a broadly specific inhibitor of enveloped particle release, and therefore, inhibition is unlikely to require specific interactions with viral proteins. Nonetheless, tetherin colocalized with nascent virus-like particles generated by several retroviral and filoviral structural proteins, indicating that it is present at, or recruited to, sites of particle assembly. Overall, tetherin is potentially active against many enveloped viruses and likely to be an important component of the antiviral innate immune defense.
Assuntos
Antígenos CD/farmacologia , Antivirais/farmacologia , Filoviridae/efeitos dos fármacos , Glicoproteínas de Membrana/farmacologia , Retroviridae/efeitos dos fármacos , Linhagem Celular , Proteínas Ligadas por GPI , HumanosRESUMO
An essential step in the release of an extracellular enveloped virus particle is a budding event that ultimately separates virion and host cell membranes. For many enveloped viruses, membrane fission requires the recruitment of the class E vacuolar protein sorting (VPS) machinery by short, virally encoded peptide sequences termed "late-budding" or "L" domains. Some L-domain peptide sequences (e.g., PSAP) bind directly to components of class E VPS machinery, whereas others (e.g., PPxY) access it indirectly by recruiting ubiquitin ligases. Additionally, ubiquitin itself is known to be generally important for the fission of virion from cellular membranes, and because ubiquitination of cellular transmembrane proteins can signal the recruitment of class E machinery, a popular model is that deposition of ubiquitin on viral structural proteins mediates class E machinery recruitment. To test this model, we took advantage of a retroviral Gag protein from the prototypic foamy virus (PFV) that is almost devoid of ubiquitin acceptors, and we engineered it to generate extracellular virus-like particles in the complete absence of other viral proteins. Notably, we found that particle budding, induced by a class E VPS machinery-binding L domain (PSAP), proceeded efficiently in the absence of ubiquitin acceptors in PFV Gag. Moreover, when particle release was engineered to be dependent on a viral PPXY motif, the requirement for a catalytically active ubiquitin ligase was maintained, irrespective of the presence or absence of ubiquitin acceptor sites in PFV Gag. Thus, in this model system, ubiquitin conjugation to transacting factors, not viral proteins, appears critical for ubiquitin-dependent enveloped viral particle release.
Assuntos
Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Linfoma de Burkitt , Catálise , Membrana Celular/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Ligação Proteica , Spumavirus/genética , Spumavirus/metabolismo , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
A recent report sought to demonstrate that acetylation of specific lysines within integrase (IN) by the histone acetyltransferase (HAT) p300 regulates human immunodeficiency virus type 1 (HIV-1) integration and is essential for viral replication (A. Cereseto, L. Manganaro, M. I. Gutierrez, M. Terreni, A. Fittipaldi, M. Lusic, A. Marcello, and M. Giacca, EMBO J. 24:3070-3081, 2005). We can corroborate the efficient and specific acetylation of the IN carboxyl-terminal domain (CTD) (amino acids 212 to 288) by p300 using purified recombinant components. Although arginine substitution mutagenesis of the isolated CTD confirms that the majority of p300 acetylation occurs at lysine residues 264, 266, and 273, the pattern of acetylation is not uniform and a hierarchy of reactivity can be established. Several combinatorial mutations of the CTD lysines modified by p300 in vitro were reconstructed into an otherwise infectious proviral plasmid clone and examined for viral growth and frequency of productive chromosomal integration. In contrast to the findings of Cereseto and coworkers, who used epitope-tagged viruses for their experiments, we find that an untagged mutant virus, IN K(264/266/273)R, is fully replication competent. This discrepancy may be explained by the use of an acidic epitope tag placed at the extreme carboxyl terminus of integrase, near the target site for acetylation. Although the tagged, wild-type virus is viable, the combination of this epitope tag with the RRR substitution mutation results in a replication-defective phenotype. Although IN belongs to the very small set of nonhistone proteins modified by HAT-mediated activity, an obligate role for acetylation at the reactive CTD lysines in HIV-1 IN cannot be confirmed.
Assuntos
Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/fisiologia , Processamento de Proteína Pós-Traducional , Replicação Viral , Acetilação , Sequência de Aminoácidos , Substituição de Aminoácidos , DNA Viral/biossíntese , Integrase de HIV/genética , Humanos , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de ProteínaRESUMO
Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in "slicer" activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.