Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 348: 283-296, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159656

RESUMO

AIMS: To assess the effect of the translocator protein 18 kDa (TSPO) on postpartum depression and explore its mechanism. METHODS: Postpartum depression (PPD) mouse model was established, and flow cytometry, immunofluorescence, Western blot analysis, real-time quantitative PCR, adeno-associated virus (AAV), co-immunoprecipitation-mass spectrometry and immunofluorescence co-staining were used to detect the effect of TSPO ligand ZBD-2 on PPD mice. RESULTS: ZBD-2 inhibits the overactivation of microglia in the hippocampus and amygdala of PPD model mice. ZBD-2 not only inhibited the inflammation but also repressed the burst of reactive oxygen species (ROS) and mitochondrial ROS (mtROS). Meanwhile, ZBD-2 protects mitochondria from LPS-induced damages through inhibiting the influx of calcium. ZBD-2 modulated the calcium influx by increasing the level of translocase of the outer mitochondrial membrane 40 (TOM40) and reducing the interaction of TSPO and TOM40. In addition, the effect of ZBD-2 was partially dependent on anti-oxidative process. Knockdown of TOM40 by adeno-associated virus (AAV) in the hippocampus or amygdala dramatically reduced the effect of ZBD-2 on PPD, indicating that TOM40 mediates the effect of ZBD-2 on PPD. CONCLUSIONS: TOM40 is required for the effect of ZBD-2 on treating anxiety and depression in PPD mice. This study reveals the role of microglia TSPO in PPD development and provides the new therapeutic strategy for PPD.


Assuntos
Depressão Pós-Parto , Microglia , Animais , Feminino , Camundongos , Cálcio/metabolismo , Proteínas de Transporte , Depressão Pós-Parto/tratamento farmacológico , Depressão Pós-Parto/metabolismo , Homeostase , Microglia/metabolismo , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA/metabolismo
2.
Front Immunol ; 8: 1754, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276519

RESUMO

Macrophages, characterized by considerable diversity and plasticity, play a crucial role in a broad spectrum of biological processes, including inflammation. However, the molecular mechanisms underlying the diverse phenotypes of macrophages are not well defined. Here, we show that the RNA-binding protein, quaking (QKI), dynamically modulates macrophage polarization states. After lipopolysaccharide (LPS) stimulation, QKI-silenced RAW 264.7 cells displayed a pro-inflammatory M1 phenotype characterized by increased expression of iNOS, TNF-α, and IL-6 and decreased expression of anti-inflammatory factors, such as IL-10, found in inflammatory zone (Fizz1), and chitinase-like 3 (Chil3 or Ym1). By contrast, QKI5 overexpression led to a suppressive phenotype resembling M2 macrophages, even under M1 differentiation conditions. Moreover, myeloid-specific QKI-deficient mice tended to be more susceptible to LPS-induced endotoxic shock, while the exogenous transfer of macrophages overexpressing QKI5 exerted a significant improving effect. This improvement corresponded to a higher proportion of M2 macrophages, in line with elevated levels of IL-10, and a decrease in levels of pro-inflammatory mediators, such as IL-6, TNF-α, and IL-1ß. Further mechanistic studies disclosed that QKI was a potent inhibitor of the nuclear factor-kappa B (NF-κB) pathway, suppressing p65 expression and phosphorylation. Strikingly, reduced expression of the aryl hydrocarbon receptor (Ahr) and reduced phosphorylation of signal transducer and activator of transcription 1 in QKI-deficient cells failed to restrain the transcriptional activity of NF-κB and NRL pyrin domain containing 3 (NLRP3) activation, while restoring QKI expression skewed the above M1-like response toward an anti-inflammatory M2 state. Taken together, these findings suggest a role for QKI in restraining overt innate immune responses by regulating the Ahr/STAT1-NF-κB pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA