Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 302: 120405, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604074

RESUMO

Interactions between ß-glucan and starch influence the health benefits of barley-based foods and barley brewing performance. Here, we characterized ß-glucans from waxy and normal barley varieties and compared the effects of different ß-glucans on the pasting and degradation of waxy and normal barley starches as well as the filterability of mashes from unmalted waxy and normal barley. Waxy barley Zangqing18 ß-glucan displayed more compact micrographic features, higher molecular weight, larger particle size, higher thermal decomposition temperature and lower rheological viscosity than normal barley Zangqing2000 ß-glucan. ß-Glucan not only significantly decreased the pasting viscosities of waxy and normal starches but also lowered the pasting temperatures and peak times of normal starch, likely by inhibiting granule swelling and disrupting the integrity of the continuous phase. ß-Glucan also decreased in vitro digestion extent of starch and increased the resistant starch. The unmalted waxy barley had a mash filtration rate much faster than normal barley because starch and ß-glucan in waxy barley were rapidly and completely digested and formed more open filter passages. The effects of ß-glucan on starch properties varied with the types and contents of ß-glucans, whilst the types of starches showed more significant effects. CHEMICAL COMPOUNDS STUDIED: ß-Glucan (Pubchem CID: 439262); Amylopectin (Pubchem CID: 439207); Starch (Pubchem CID: 156595876).


Assuntos
Hordeum , beta-Glucanas , Amido/química , beta-Glucanas/química , Hordeum/química , Ceras , Amilopectina/metabolismo , Viscosidade
2.
J Agric Food Chem ; 69(4): 1206-1213, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481586

RESUMO

Starch biosynthesis in cereal crops is a complex pathway regulated by multiple starch synthetic enzymes. Starch synthase IIa (SSIIa) is well-known to be one of the major starch synthases and is very important in amylopectin biosynthesis. It has significant effects on grain composition and kernel traits. However, there are few reports on the association of natural variation of SSIIa in barley and grain composition and characteristics. In this work, two SSIIa isoforms were first identified as SSIIaH and SSIIaL by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, mass spectrometry, and Western blotting. Sequence analysis of the SSIIa gene demonstrated that a 33 bp insertion coding a peptide of APPSSVVPAKK caused different SSIIa, e.g., SSIIaH and SSIIaL. Based on this molecular difference, a polymerase chain reaction marker was developed, which could be used to screen different SSIIa genotypes easily. Kernel hardness of SSIIaL genotypes was significantly higher than that of SSIIaH Chinese barley cultivars. The proportion of SSIIaL genotypes was extremely low in Australian barley cultivars (5/24) and much higher in Tibetan hull-less barley cultivars (46/74), consistent with the end-use requirements of barley grain. This study provided new information in barley endosperm starch synthesis and indicated that it is valuable for choosing the preferred SSIIa genotype according to the end-use requirements.


Assuntos
Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Sementes/química , Sintase do Amido/metabolismo , Sequência de Aminoácidos , Amilopectina/química , Amilopectina/metabolismo , Austrália , Hordeum/química , Hordeum/genética , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sementes/enzimologia , Sementes/genética , Amido/química , Amido/metabolismo , Sintase do Amido/genética
3.
J Food Sci ; 85(10): 3141-3149, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32857867

RESUMO

Hull-less barley (HLB), especially waxy HLB, contains many physiologically active ingredients; however, its poor processing performance and end-product quality are unfavorable. In this study, 80% waxy or normal HLB wholegrain flour (WGF) and 20% wheat flour were used for baking bread. The farinograph and pasting properties of composite powders, and the nutritional value, textural properties, and in vitro hydrolysis of resultant breads were evaluated. The addition of a high proportion of HLB WGFs significantly increased the nutritional value of breads, especially the ß-glucan contents of waxy HLB breads. The addition of HLB WGFs and a suitable amount of wheat gluten led to a lower degree of softening of HLB bread flours but improved its farinograph characteristics, such as higher water absorption rate, development time, stability time, and farinograph quality number. Although the sensory profiles of HLB breads were considerably lower than those of wheat bread, they still received a good overall acceptability from a panel of sensory evaluators. HLB breads, particularly the waxy types, exhibited higher hardness, gumminess, chewiness, and lower specific volume, glycemic index and equilibrium concentration in starch hydrolysis. After baking, the starch crystallinity of dough changed from A to V type, and the relative crystallinity decreased. Overall, waxy HLB breads had more nutritional value than normal HLB breads. Higher ß-glucan and total dietary fiber content in HLB might have a positive effect on the nutritional value of the resultant breads. However, high ß-glucan and total dietary fiber was also accompanied by a negative effect on the sensory quality and processing performance of the end product. PRACTICAL APPLICATION: The composite flour with 80 g hull-less barley wholegrain flour, 20 g wheat flour, and 30 g wheat gluten can be substituted in breadmaking. Compared to wheat bread, hull-less barley bread exhibited different but acceptable sensory properties and had more nutritional value, particularly the waxy one. Therefore, a high proportion of hull-less barley could be recommended for bread production.


Assuntos
Pão/análise , Farinha/análise , Manipulação de Alimentos/métodos , Hordeum/química , Amido/análise , Fibras na Dieta/análise , Digestão , Aditivos Alimentares/análise , Manipulação de Alimentos/instrumentação , Glutens/análise , Índice Glicêmico , Dureza , Humanos , Valor Nutritivo , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA