Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854107

RESUMO

Aging is a critical risk factor for heart disease, including ischemic heart disease and heart failure. Cellular senescence, characterized by DNA damage, resistance to apoptosis and the senescence-associated secretory phenotype (SASP), occurs in many cell types, including cardiomyocytes. Senescence precipitates the aging process in surrounding cells and the organ through paracrine mechanisms. Generalized autophagy, which degrades cytosolic materials in a non-selective manner, is decreased during aging in the heart. This decrease causes deterioration of cellular quality control mechanisms, facilitates aging and negatively affects lifespan in animals, including mice. Although suppression of generalized autophagy could promote senescence, it remains unclear whether the suppression of autophagy directly stimulates senescence in cardiomyocytes, which, in turn, promotes myocardial dysfunction in the heart. We addressed this question using mouse models with a loss of autophagy function. Suppression of general autophagy in cardiac-specific Atg7 knockout ( Atg7 cKO) mice caused accumulation of senescent cardiomyocytes. Induction of senescence via downregulation of Atg7 was also observed in chimeric Atg7 cardiac-specific KO mice and cultured cardiomyocytes in vitro , suggesting that the effect of autophagy suppression upon induction of senescence is cell autonomous. ABT-263, a senolytic agent, reduced the number of senescent myocytes and improved cardiac function in Atg7 cKO mice. Suppression of autophagy and induction of senescence were also observed in doxorubicin-treated hearts, where activation of autophagy alleviated senescence in cardiomyocytes and cardiac dysfunction. These results suggest that suppression of general autophagy directly induces senescence in cardiomyocytes, which in turn promotes cardiac dysfunction.

2.
Biomacromolecules ; 25(2): 1319-1329, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38291600

RESUMO

Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide, especially in aging and metabolically unhealthy populations. A major target of regenerative tissue engineering is the restoration of viable cardiomyocytes to preserve cardiac function and circumvent the progression to heart failure post-MI. Amelioration of ischemia is a crucial component of such restorative strategies. Angiogenic ß-sheet peptides can self-assemble into thixotropic nanofibrous hydrogels. These syringe aspiratable cytocompatible gels were loaded with stem cells and showed excellent cytocompatibility and minimal impact on the storage and loss moduli of hydrogels. Gels with and without cells were delivered into the myocardium of a mouse MI model (LAD ligation). Cardiac function and tissue remodeling were evaluated up to 4 weeks in vivo. Injectable peptide hydrogels synergized with loaded murine embryonic stem cells to demonstrate enhanced survival after intracardiac delivery during the acute phase post-MI, especially at 7 days. This approach shows promise for post-MI treatment and potentially functional cardiac tissue regeneration and warrants large-scale animal testing prior to clinical translation.


Assuntos
Hidrogéis , Infarto do Miocárdio , Camundongos , Animais , Hidrogéis/farmacologia , Infarto do Miocárdio/terapia , Miocárdio , Peptídeos/farmacologia , Células-Tronco Embrionárias
3.
Nat Commun ; 14(1): 5805, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726310

RESUMO

The anti-apoptotic function of Bcl-xL in the heart during ischemia/reperfusion is diminished by K-Ras-Mst1-mediated phosphorylation of Ser14, which allows dissociation of Bcl-xL from Bax and promotes cardiomyocyte death. Here we show that Ser14 phosphorylation of Bcl-xL is also promoted by hemodynamic stress in the heart, through the H-Ras-ERK pathway. Bcl-xL Ser14 phosphorylation-resistant knock-in male mice develop less cardiac hypertrophy and exhibit contractile dysfunction and increased mortality during acute pressure overload. Bcl-xL Ser14 phosphorylation enhances the Ca2+ transient by blocking the inhibitory interaction between Bcl-xL and IP3Rs, thereby promoting Ca2+ release and activation of the calcineurin-NFAT pathway, a Ca2+-dependent mechanism that promotes cardiac hypertrophy. These results suggest that phosphorylation of Bcl-xL at Ser14 in response to acute pressure overload plays an essential role in mediating compensatory hypertrophy by inducing the release of Bcl-xL from IP3Rs, alleviating the negative constraint of Bcl-xL upon the IP3R-NFAT pathway.


Assuntos
Cálcio , Miócitos Cardíacos , Animais , Masculino , Camundongos , Cardiomegalia , Sistema de Sinalização das MAP Quinases , Fosforilação
4.
J Mol Cell Cardiol ; 181: 1-14, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37235928

RESUMO

Inflammation is an integral component of cardiovascular disease and is thought to contribute to cardiac dysfunction and heart failure. While ischemia-induced inflammation has been extensively studied in the heart, relatively less is known regarding cardiac inflammation during non-ischemic stress. Recent work has implicated a role for Yes-associated protein (YAP) in modulating inflammation in response to ischemic injury; however, whether YAP influences inflammation in the heart during non-ischemic stress is not described. We hypothesized that YAP mediates a pro-inflammatory response during pressure overload (PO)-induced non-ischemic injury, and that targeted YAP inhibition in the myeloid compartment is cardioprotective. In mice, PO elicited myeloid YAP activation, and myeloid-specific YAP knockout mice (YAPF/F;LysMCre) subjected to PO stress had better systolic function, and attenuated pathological remodeling compared to control mice. Inflammatory indicators were also significantly attenuated, while pro-resolving genes including Vegfa were enhanced, in the myocardium, and in isolated macrophages, of myeloid YAP KO mice after PO. Experiments using bone marrow-derived macrophages (BMDMs) from YAP KO and control mice demonstrated that YAP suppression shifted polarization toward a resolving phenotype. We also observed attenuated NLRP3 inflammasome priming and function in YAP deficient BMDMs, as well as in myeloid YAP KO hearts following PO, indicating disruption of inflammasome induction. Finally, we leveraged nanoparticle-mediated delivery of the YAP inhibitor verteporfin and observed attenuated PO-induced pathological remodeling compared to DMSO nanoparticle control treatment. These data implicate myeloid YAP as an important molecular nodal point that facilitates cardiac inflammation and fibrosis during PO stress and suggest that selective inhibition of YAP may prove a novel therapeutic target in non-ischemic heart disease.


Assuntos
Inflamassomos , Remodelação Ventricular , Camundongos , Animais , Inflamassomos/metabolismo , Coração , Miocárdio/metabolismo , Inflamação/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
5.
Circ Res ; 133(1): 6-21, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37232152

RESUMO

BACKGROUND: Obesity induces cardiomyopathy characterized by hypertrophy and diastolic dysfunction. Whereas mitophagy mediated through an Atg7 (autophagy related 7)-dependent mechanism serves as an essential mechanism to maintain mitochondrial quality during the initial development of obesity cardiomyopathy, Rab9 (Ras-related protein Rab-9A)-dependent alternative mitophagy takes over the role during the chronic phase. Although it has been postulated that DRP1 (dynamin-related protein 1)-mediated mitochondrial fission and consequent separation of the damaged portions of mitochondria are essential for mitophagy, the involvement of DRP1 in mitophagy remains controversial. We investigated whether endogenous DRP1 is essential in mediating the 2 forms of mitophagy during high-fat diet (HFD)-induced obesity cardiomyopathy and, if so, what the underlying mechanisms are. METHODS: Mice were fed either a normal diet or an HFD (60 kcal %fat). Mitophagy was evaluated using cardiac-specific Mito-Keima mice. The role of DRP1 was evaluated using tamoxifen-inducible cardiac-specific Drp1knockout (Drp1 MCM) mice. RESULTS: Mitophagy was increased after 3 weeks of HFD consumption. The induction of mitophagy by HFD consumption was completely abolished in Drp1 MCM mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. The increase in LC3 (microtubule-associated protein 1 light chain 3)-dependent general autophagy and colocalization between LC3 and mitochondrial proteins was abolished in Drp1 MCM mice. Activation of alternative mitophagy was also completely abolished in Drp1 MCM mice during the chronic phase of HFD consumption. DRP1 was phosphorylated at Ser616, localized at the mitochondria-associated membranes, and associated with Rab9 and Fis1 (fission protein 1) only during the chronic, but not acute, phase of HFD consumption. CONCLUSIONS: DRP1 is an essential factor in mitochondrial quality control during obesity cardiomyopathy that controls multiple forms of mitophagy. Although DRP1 regulates conventional mitophagy through a mitochondria-associated membrane-independent mechanism during the acute phase, it acts as a component of the mitophagy machinery at the mitochondria-associated membranes in alternative mitophagy during the chronic phase of HFD consumption.


Assuntos
Cardiomiopatias , Mitofagia , Animais , Camundongos , Autofagia/fisiologia , Cardiomiopatias/genética , Dinaminas/genética , Dinaminas/metabolismo , Coração , Dinâmica Mitocondrial , Mitofagia/fisiologia , Obesidade/genética
6.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480290

RESUMO

Modification of cysteine residues by oxidative and nitrosative stress affects structure and function of proteins, thereby contributing to the pathogenesis of cardiovascular disease. Although the major function of thioredoxin 1 (Trx1) is to reduce disulfide bonds, it can also act as either a denitrosylase or transnitrosylase in a context-dependent manner. Here we show that Trx1 transnitrosylates Atg7, an E1-like enzyme, thereby stimulating autophagy. During ischemia, Trx1 was oxidized at Cys32-Cys35 of the oxidoreductase catalytic center and S-nitrosylated at Cys73. Unexpectedly, Atg7 Cys545-Cys548 reduced the disulfide bond in Trx1 at Cys32-Cys35 through thiol-disulfide exchange and this then allowed NO to be released from Cys73 in Trx1 and transferred to Atg7 at Cys402. Experiments conducted with Atg7 C402S-knockin mice showed that S-nitrosylation of Atg7 at Cys402 promotes autophagy by stimulating E1-like activity, thereby protecting the heart against ischemia. These results suggest that the thiol-disulfide exchange and the NO transfer are functionally coupled, allowing oxidized Trx1 to mediate a salutary effect during myocardial ischemia through transnitrosylation of Atg7 and stimulation of autophagy.


Assuntos
Isquemia Miocárdica , Tiorredoxinas , Animais , Camundongos , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Cisteína/metabolismo , Dissulfetos , Isquemia Miocárdica/genética , Oxirredução , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
7.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35133975

RESUMO

The heart utilizes multiple adaptive mechanisms to maintain pump function. Compensatory cardiac hypertrophy reduces wall stress and oxygen consumption, thereby protecting the heart against acute blood pressure elevation. The nuclear effector of the Hippo pathway, Yes-associated protein 1 (YAP), is activated and mediates compensatory cardiac hypertrophy in response to acute pressure overload (PO). In this study, YAP promoted glycolysis by upregulating glucose transporter 1 (GLUT1), which in turn caused accumulation of intermediates and metabolites of the glycolytic, auxiliary, and anaplerotic pathways during acute PO. Cardiac hypertrophy was inhibited and heart failure was exacerbated in mice with YAP haploinsufficiency in the presence of acute PO. However, normalization of GLUT1 rescued the detrimental phenotype. PO induced the accumulation of glycolytic metabolites, including l-serine, l-aspartate, and malate, in a YAP-dependent manner, thereby promoting cardiac hypertrophy. YAP upregulated the GLUT1 gene through interaction with TEA domain family member 1 (TEAD1) and HIF-1α in cardiomyocytes. Thus, YAP induces compensatory cardiac hypertrophy through activation of the Warburg effect.


Assuntos
Cardiomegalia , Miócitos Cardíacos , Proteínas de Sinalização YAP/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ciclo do Ácido Cítrico , Transportador de Glucose Tipo 1/genética , Glicólise , Camundongos , Miócitos Cardíacos/metabolismo
8.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053374

RESUMO

Autosis is a unique form of cell death with characteristic morphological and biochemical features caused by dysregulated autophagy. Autosis is observed in the heart during the late phase of ischemia/reperfusion (I/R), when marked accumulation of autophagosomes is induced. We previously showed that the excessive accumulation of autophagosomes promotes autosis in cardiomyocytes. Although the inhibition of autophagic flux via the upregulation of Rubicon induces the accumulation of autophagosomes during I/R, it appears that additional mechanisms exacerbating autophagosome accumulation are required for the induction of autosis. Here, we show that Tfeb contributes to the induction of autosis during the late phase of I/R in the heart. During myocardial reperfusion, Tfeb is activated and translocated into the nucleus, which in turn upregulates genes involved in autophagy and lysosomal function. The overexpression of Tfeb enhanced cardiomyocyte death induced by a high dose of TAT-Beclin 1, an effect that was inhibited by the downregulation of Atg7. Conversely, the knockdown of Tfeb attenuated high-dose TAT-Beclin1-induced death in cardiomyocytes. Although the downregulation of Tfeb in the heart significantly decreased the number of autophagic vacuoles and inhibited autosis during I/R, the activation of Tfeb activity via 3,4-dimethoxychalcone, an activator of Tfeb, aggravated myocardial injury during I/R. These findings suggest that Tfeb promotes cardiomyocyte autosis during the late phase of reperfusion in the heart.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Traumatismo por Reperfusão Miocárdica/genética , Animais , Animais Recém-Nascidos , Proteína Beclina-1/metabolismo , Chalconas , Regulação para Baixo/genética , Produtos do Gene tat/metabolismo , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Vacúolos/metabolismo
9.
Cardiovasc Res ; 118(12): 2638-2651, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35018428

RESUMO

AIMS: Well-controlled mitochondrial homeostasis, including a mitochondria-specific form of autophagy (hereafter referred to as mitophagy), is essential for maintaining cardiac function. The molecular mechanism mediating mitophagy during pressure overload (PO) is poorly understood. We have shown previously that mitophagy in the heart is mediated primarily by Atg5/Atg7-independent mechanisms, including Unc-51-like kinase 1 (Ulk1)-dependent alternative mitophagy, during myocardial ischaemia. Here, we investigated the role of alternative mitophagy in the heart during PO-induced hypertrophy. METHODS AND RESULTS: Mitophagy was observed in the heart in response to transverse aortic constriction (TAC), peaking at 3-5 days. Whereas mitophagy is transiently up-regulated by TAC through an Atg7-dependent mechanism in the heart, peaking at 1 day, it is also activated more strongly and with a delayed time course through an Ulk1-dependent mechanism. TAC induced more severe cardiac dysfunction, hypertrophy, and fibrosis in ulk1 cardiac-specific knock-out (cKO) mice than in wild-type mice. Delayed activation of mitophagy was characterized by the co-localization of Rab9 dots and mitochondria and phosphorylation of Rab9 at Ser179, major features of alternative mitophagy. Furthermore, TAC-induced decreases in the mitochondrial aspect ratio were abolished and the irregularity of mitochondrial cristae was exacerbated, suggesting that mitochondrial quality control mechanisms are impaired in ulk1 cKO mice in response to TAC. TAT-Beclin 1 activates mitophagy even in Ulk1-deficient conditions. TAT-Beclin 1 treatment rescued mitochondrial dysfunction and cardiac dysfunction in ulk1 cKO mice during PO. CONCLUSION: Ulk1-mediated alternative mitophagy is a major mechanism mediating mitophagy in response to PO and plays an important role in mediating mitochondrial quality control mechanisms and protecting the heart against cardiac dysfunction.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Cardiomegalia , Mitofagia , Animais , Aorta/cirurgia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/metabolismo , Hipertrofia , Camundongos , Mitofagia/genética , Mitofagia/fisiologia , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
Sci Rep ; 11(1): 23469, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873220

RESUMO

The Hippo pathway plays a wide variety of roles in response to stress in the heart. Lats2, a component of the Hippo pathway, is phosphorylated by Mst1/2 and, in turn, phosphorylates YAP, causing inactivation of YAP. Lats2 stimulates apoptosis and negatively affects hypertrophy in cardiomyocytes. However, the role of Lats2 during cardiac stress is poorly understood in vivo. Lats2 is activated in the mouse heart in response to transverse aortic constriction (TAC). We used systemic Lats2 +/- mice to elucidate the role of endogenous Lats2. Cardiac hypertrophy and dysfunction induced by 4 weeks of TAC were attenuated in Lats2 +/- mice, and interstitial fibrosis and apoptosis were suppressed. Although TAC upregulated the Bcl-2 family proapoptotic (Bax and Bak) and anti-apoptotic (Bcl-2 and Bcl-xL) molecules in non-transgenic mice, TAC-induced upregulation of Bax and Bak was alleviated and that of Bcl-2 was enhanced in Lats2 +/- mice. TAC upregulated p53, but this upregulation was abolished in Lats2 +/- mice. Lats2-induced increases in apoptosis and decreases in survival in cardiomyocytes were inhibited by Pifithrin-α, a p53 inhibitor, suggesting that Lats2 stimulates apoptosis via a p53-dependent mechanism. In summary, Lats2 is activated by pressure overload, thereby promoting heart failure by stimulating p53-dependent mechanisms of cell death.


Assuntos
Apoptose/fisiologia , Insuficiência Cardíaca/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Insuficiência Cardíaca/patologia , Via de Sinalização Hippo/fisiologia , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Regulação para Cima/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-34778891

RESUMO

INTRODUCTION: Glycogen synthase kinase-3ß (GSK-3ß) is a serine/threonine kinase and a negative regulator of cardiac hypertrophy. Phosphorylation of GSK-3ß at Ser9 negatively regulates its kinase activity. The role of GSK-3ß in cardiac aging remains poorly understood. AIM: The study aimed to elucidate the role of GSK-3ß Ser9 phosphorylation in mediating cardiac aging and the underlying mechanism. METHODS AND RESULTS: Phosphorylation of GSK-3ß at Ser9 and the levels of ß-catenin and Mcl-1 were increased in the mouse heart during aging, suggesting that GSK-3ß is inactivated during aging in the heart. Age-induced cardiac hypertrophy, fibrosis, left ventricular dysfunction, and increases in cardiomyocyte apoptosis and senescence were all attenuated in constitutively active GSK-3ßS9A knock-in (KI) mice compared to littermate wild type mice. Although autophagy is inhibited in the heart during aging, KI of GSK-3ßS9A reversed the age-associated decline in autophagy in the mouse heart. GSK-3ß directly phosphorylates Ulk1, a regulator of autophagy, at Ser913, thereby stimulating autophagy in cardiomyocytes. Ulk1Ser913A KI mice exhibited decreased autophagic flux and increased senescence in cardiomyocytes. CONCLUSION: Our results suggest that GSK-3ß is inactivated during aging through Ser9 phosphorylation, which in turn plays an important role in mediating cardiac aging. GSK-3ß promotes autophagy through phosphorylation of Ulk1 at Ser913, which in turn prevents aging in the heart.

12.
Circ Res ; 129(12): 1105-1121, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34724805

RESUMO

RATIONALE: Obesity-associated cardiomyopathy characterized by hypertrophy and mitochondrial dysfunction. Mitochondrial quality control mechanisms, including mitophagy, are essential for the maintenance of cardiac function in obesity-associated cardiomyopathy. However, autophagic flux peaks at around 6 weeks of high-fat diet (HFD) consumption and declines thereafter. OBJECTIVE: We investigated whether mitophagy is activated during the chronic phase of cardiomyopathy associated with obesity (obesity cardiomyopathy) after general autophagy is downregulated and, if so, what the underlying mechanism and the functional significance are. METHODS AND RESULTS: Mice were fed either a normal diet or a HFD (60 kcal% fat). Mitophagy, evaluated using Mito-Keima, was increased after 3 weeks of HFD consumption and continued to increase after conventional mechanisms of autophagy were inactivated, at least until 24 weeks. HFD consumption time-dependently upregulated both Ser555-phosphorylated Ulk1 (unc-51 like kinase 1) and Rab9 (Ras-related protein Rab-9) in the mitochondrial fraction. Mitochondria were sequestrated by Rab9-positive ring-like structures in cardiomyocytes isolated from mice after 20 weeks of HFD consumption, consistent with the activation of alternative mitophagy. Increases in mitophagy induced by HFD consumption for 20 weeks were abolished in cardiac-specific ulk1 knockout mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. Rab9 S179A knock-in mice, in which alternative mitophagy is selectively suppressed, exhibited impaired mitophagy and more severe cardiac dysfunction than control mice following HFD consumption for 20 weeks. Overexpression of Rab9 in the heart increased mitophagy and protected against cardiac dysfunction during HFD consumption. HFD-induced activation of Rab9-dependent mitophagy was accompanied by upregulation of TFE3 (transcription factor binding to IGHM enhancer 3), which plays an essential role in transcriptional activation of mitophagy. CONCLUSIONS: Ulk1-Rab9-dependent alternative mitophagy is activated during the chronic phase of HFD consumption and serves as an essential mitochondrial quality control mechanism, thereby protecting the heart against obesity cardiomyopathy.


Assuntos
Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitofagia , Obesidade/complicações , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
14.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373332

RESUMO

Lysosomal dysfunction caused by mutations in lysosomal genes results in lysosomal storage disorder (LSD), characterized by accumulation of damaged proteins and organelles in cells and functional abnormalities in major organs, including the heart, skeletal muscle, and liver. In LSD, autophagy is inhibited at the lysosomal degradation step and accumulation of autophagosomes is observed. Enlargement of the left ventricle (LV) and contractile dysfunction were observed in RagA/B cardiac-specific KO (cKO) mice, a mouse model of LSD in which lysosomal acidification is impaired irreversibly. YAP, a downstream effector of the Hippo pathway, was accumulated in RagA/B cKO mouse hearts. Inhibition of YAP ameliorated cardiac hypertrophy and contractile dysfunction and attenuated accumulation of autophagosomes without affecting lysosomal function, suggesting that YAP plays an important role in mediating cardiomyopathy in RagA/B cKO mice. Cardiomyopathy was also alleviated by downregulation of Atg7, an intervention to inhibit autophagy, whereas it was exacerbated by stimulation of autophagy. YAP physically interacted with transcription factor EB (TFEB), a master transcription factor that controls autophagic and lysosomal gene expression, thereby facilitating accumulation of autophagosomes without degradation. These results indicate that accumulation of YAP in the presence of LSD promotes cardiomyopathy by stimulating accumulation of autophagosomes through activation of TFEB.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Proteínas de Sinalização YAP
15.
Cardiovasc Res ; 117(11): 2365-2376, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33070172

RESUMO

AIMS: A diet with modified components, such as a ketogenic low-carbohydrate (LC) diet, potentially extends longevity and healthspan. However, how an LC diet impacts on cardiac pathology during haemodynamic stress remains elusive. This study evaluated the effects of an LC diet high in either fat (Fat-LC) or protein (Pro-LC) in a mouse model of chronic hypertensive cardiac remodelling. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction, followed by feeding with the Fat-LC, the Pro-LC, or a high-carbohydrate control diet. After 4 weeks, echocardiographic, haemodynamic, histological, and biochemical analyses were performed. LC diet consumption after pressure overload inhibited the development of pathological hypertrophy and systolic dysfunction compared to the control diet. An anti-hypertrophic serine/threonine kinase, GSK-3ß, was re-activated by both LC diets; however, the Fat-LC, but not the Pro-LC, diet exerted cardioprotection in GSK-3ß cardiac-specific knockout mice. ß-hydroxybutyrate, a major ketone body in mammals, was increased in the hearts of mice fed the Fat-LC, but not the Pro-LC, diet. In cardiomyocytes, ketone body supplementation inhibited phenylephrine-induced hypertrophy, in part by suppressing mTOR signalling. CONCLUSION: Strict carbohydrate restriction suppresses pathological cardiac growth and heart failure after pressure overload through distinct anti-hypertrophic mechanisms elicited by supplemented macronutrients.


Assuntos
Dieta Rica em Proteínas e Pobre em Carboidratos , Dieta Cetogênica , Carboidratos da Dieta/metabolismo , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Ração Animal , Animais , Células Cultivadas , Carboidratos da Dieta/administração & dosagem , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Valor Nutritivo , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular
16.
JACC Basic Transl Sci ; 5(9): 931-945, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015415

RESUMO

Fibrotic remodeling of the heart in response to injury contributes to heart failure, yet therapies to treat fibrosis remain elusive. Yes-associated protein (YAP) is activated in cardiac fibroblasts by myocardial infarction, and genetic inhibition of fibroblast YAP attenuates myocardial infarction-induced cardiac dysfunction and fibrosis. YAP promotes myofibroblast differentiation and associated extracellular matrix gene expression through engagement of TEA domain transcription factor 1 and subsequent de novo expression of myocardin-related transcription factor A. Thus, fibroblast YAP is a promising therapeutic target to prevent fibrotic remodeling and heart failure.

17.
J Clin Invest ; 130(6): 2978-2991, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364533

RESUMO

Although autophagy is generally protective, uncontrolled or excessive activation of autophagy can be detrimental. However, it is often difficult to distinguish death by autophagy from death with autophagy, and whether autophagy contributes to death in cardiomyocytes (CMs) is still controversial. Excessive activation of autophagy induces a morphologically and biochemically defined form of cell death termed autosis. Whether autosis is involved in tissue injury induced under pathologically relevant conditions is poorly understood. In the present study, myocardial ischemia/reperfusion (I/R) induced autosis in CMs, as evidenced by cell death with numerous vacuoles and perinuclear spaces, and depleted intracellular membranes. Autosis was observed frequently after 6 hours of reperfusion, accompanied by upregulation of Rubicon, attenuation of autophagic flux, and marked accumulation of autophagosomes. Genetic downregulation of Rubicon inhibited autosis and reduced I/R injury, whereas stimulation of autosis during the late phase of I/R with Tat-Beclin 1 exacerbated injury. Suppression of autosis by ouabain, a cardiac glycoside, in humanized Na+,K+-ATPase-knockin mice reduced I/R injury. Taken together, these results demonstrate that autosis is significantly involved in I/R injury in the heart and triggered by dysregulated accumulation of autophagosomes due to upregulation of Rubicon.


Assuntos
Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Regulação para Cima , Animais , Autofagossomos/genética , Autofagossomos/metabolismo , Autofagossomos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia
18.
Cardiovasc Res ; 116(10): 1742-1755, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31584633

RESUMO

AIMS: Thioredoxin 1 (Trx1) is an evolutionarily conserved oxidoreductase that cleaves disulphide bonds in oxidized substrate proteins such as mechanistic target of rapamycin (mTOR) and maintains nuclear-encoded mitochondrial gene expression. The cardioprotective effect of Trx1 has been demonstrated via cardiac-specific overexpression of Trx1 and dominant negative Trx1. However, the pathophysiological role of endogenous Trx1 has not been defined with a loss-of-function model. To address this, we have generated cardiac-specific Trx1 knockout (Trx1cKO) mice. METHODS AND RESULTS: Trx1cKO mice were viable but died with a median survival age of 25.5 days. They developed heart failure, evidenced by contractile dysfunction, hypertrophy, and increased fibrosis and apoptotic cell death. Multiple markers consistently indicated increased oxidative stress and RNA-sequencing revealed downregulation of genes involved in energy production in Trx1cKO mice. Mitochondrial morphological abnormality was evident in these mice. Although heterozygous Trx1cKO mice did not show any significant baseline phenotype, pressure-overload-induced cardiac dysfunction, and downregulation of metabolic genes were exacerbated in these mice. mTOR was more oxidized and phosphorylation of mTOR substrates such as S6K and 4EBP1 was impaired in Trx1cKO mice. In cultured cardiomyocytes, Trx1 knockdown inhibited mitochondrial respiration and metabolic gene promoter activity, suggesting that Trx1 maintains mitochondrial function in a cell autonomous manner. Importantly, mTOR-C1483F, an oxidation-resistant mutation, prevented Trx1 knockdown-induced mTOR oxidation and inhibition and attenuated suppression of metabolic gene promoter activity. CONCLUSION: Endogenous Trx1 is essential for maintaining cardiac function and metabolism, partly through mTOR regulation via Cys1483.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tiorredoxinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Ratos Wistar , Transdução de Sinais , Tiorredoxinas/genética
19.
JACC Basic Transl Sci ; 4(5): 611-622, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768477

RESUMO

Patients with diabetes are more prone to developing heart failure in the presence of high blood pressure than those without diabetes. Yes-associated protein (YAP), a key effector of the Hippo signaling pathway, is persistently activated in diabetic hearts, and YAP plays an essential role in mediating the exacerbation of heart failure in response to pressure overload in the hearts of mice fed a high-fat diet. YAP induced dedifferentiation of cardiomyocytes through activation of transcriptional enhancer factor 1 (TEAD1), a transcription factor. Thus, YAP and TEAD1 are promising therapeutic targets for diabetic patients with high blood pressure to prevent the development of heart failure.

20.
Am J Physiol Heart Circ Physiol ; 317(4): H711-H725, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31347918

RESUMO

The heart requires high-energy production, but metabolic ability declines in the failing heart. Nicotinamide phosphoribosyl-transferase (Nampt) is a rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD) synthesis. NAD is directly involved in various metabolic processes and may indirectly regulate metabolic gene expression through sirtuin 1 (Sirt1), an NAD-dependent protein deacetylase. However, how Nampt regulates cardiac function and metabolism in the failing heart is poorly understood. Here we show that pressure-overload (PO)-induced heart failure is exacerbated in both systemic Nampt heterozygous knockout (Nampt+/-) mice and mice with cardiac-specific Nampt overexpression (Tg-Nampt). The NAD level declined in Nampt+/- mice under PO (wild: 377 pmol/mg tissue; Nampt+/-: 119 pmol/mg tissue; P = 0.028). In cultured cardiomyocytes, Nampt knockdown diminished mitochondrial NAD content and ATP production (relative ATP production: wild: 1; Nampt knockdown: 0.56; P = 0.0068), suggesting that downregulation of Nampt induces mitochondrial dysfunction. On the other hand, the NAD level was increased in Tg-Nampt mice at baseline but not during PO, possibly due to increased consumption of NAD by Sirt1. The expression of Sirt1 was increased in Tg-Nampt mice, in association with reduced overall protein acetylation. PO-induced downregulation of metabolic genes was exacerbated in Tg-Nampt mice. In cultured cardiomyocytes, Nampt and Sirt1 cooperatively suppressed mitochondrial proteins and ATP production, thereby promoting mitochondrial dysfunction. In addition, Nampt overexpression upregulated inflammatory cytokines, including TNF-α and monocyte chemoattractant protein-1. Thus endogenous Nampt maintains cardiac function and metabolism in the failing heart, whereas Nampt overexpression is detrimental during PO, possibly due to excessive activation of Sirt1, suppression of mitochondrial function, and upregulation of proinflammatory mechanisms.NEW & NOTEWORTHY Nicotinamide phosphoribosyl-transferase (Nampt) is a rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide synthesis. We demonstrate that pressure overload-induced heart failure is exacerbated in both systemic Nampt heterozygous knockout mice and mice with cardiac-specific Nampt overexpression. Both loss- and gain-of-function models exhibited reduced protein acetylation, suppression of metabolic genes, and mitochondrial energetic dysfunction. Thus endogenous Nampt maintains cardiac function and metabolism in the failing heart, but cardiac-specific Nampt overexpression is detrimental rather than therapeutic.


Assuntos
Citocinas/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/enzimologia , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Nicotinamida Fosforribosiltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aorta Torácica/fisiopatologia , Aorta Torácica/cirurgia , Células Cultivadas , Citocinas/deficiência , Citocinas/genética , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Ligadura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/deficiência , Nicotinamida Fosforribosiltransferase/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA