Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144976

RESUMO

Electromagnetic metasurfaces with excellent electromagnetic wave regulation properties are promising for designing high-performance polarization control devices, while the application prospect of electromagnetic metasurfaces is limited because of the current development situations of the complex structure, low conversion efficiency, and narrow working bandwidth. In this work, we design a type of reflective terahertz metasurface made of a simple structure that can achieve multiple polarization modulation with high efficiency. It is shown that the presented metasurface can realize ultra-broadband, cross-polarization conversion with the relative working bandwidth reaching 94% and a conversion efficiency of over 90%. In addition, the proposed metasurface can also efficiently accomplish different polarization conversion functions, such as linear-to-linear, linear-to-circular, or circular-to-linear polarization conversion in multiple frequency bands. Due to the excellent properties, the designed metasurface can be used as a high-efficiency multi-functional polarization modulation device, and it has important application value in terahertz imaging, communication, biological detection, and other fields.

2.
Opt Express ; 29(16): 25720-25730, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614895

RESUMO

In this paper, a strategy to achieve a simultaneous wavefront shaping and polarization rotation, without compromising the number of pixels and energy efficiency as well as having broadband operation range, is proposed. This strategy is based on the application of a spin-decoupled phase metasurface composed by only one set of metal-insulator-metal (MIM) umbrella-shaped chiral unit cells. Quasi-non-dispersive and spin-decoupled phase shift can be achieved simply by changing single structural parameter of the structure. By further merging the Pancharatnam-Berry (PB) geometric phase, conversion of an incident LP light beam into right- and left-handed circularly polarized reflected beams with similar amplitudes, desired phase profiles and controlled phase retardation on a nanoscale is enabled with high efficiency. Based on the proposed strategy, a polarization-insensitive hologram generator with control optical activity, and a multiple ring vortex beam generator are realized. The results obtained in this work provide a simple and pixel-saving approach to the design of integratable and multitasking devices combining polarization manipulation and wavefront shaping functions, such as vectorial holographic generators, multifocal metalenses, and multichannel vector beam generators.

3.
Materials (Basel) ; 12(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085986

RESUMO

We present an acoustic metamaterial (AMM) consisting of a dumbbell-shaped split hollow sphere (DSSHS). Transmission results of experiments and simulations both presented a transmitted dip at the resonant frequency of AMM, which demonstrated its negative modulus property. As the two split holes in the DSSHS had strong coupling effects for the acoustic medium in the local region, the dip could be simply manipulated by tuning the distance between the split holes. When the distance was large enough, the mutual inductance tended to disappear, and a weak interaction existed in the structure. According to the property of weak interaction, a multiband AMM and a broadband AMM with a negative modulus could be achieved by arraying DSSHS clusters with different distances. Furthermore, mutual inductance and coupling in DSSHS reinforced the local resonance, and this kind of cell could be used to design the acoustic metasurface to abnormally control the refractive waves.

4.
Materials (Basel) ; 11(10)2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30322182

RESUMO

We propose a tunable acoustic metasurface using a nested structure as the microunit, which is constituted by two distinct resonators. Thanks to the coupling resonance for the microunit and by simply adjusting the rotation angle of the inner split cavity, this nested structure provides nearly 2π phase shift. The full-wave simulations demonstrate that the constructed metasurface can be tuned to reflect incident sound waves to different directions in the operation frequency region with a very narrow bandwidth, which is a key functionality for many applications such as filtering and imaging. Meanwhile, the reflected sound waves out of the operation frequency region always remain unchanged. As a result, a high Q-factor spectrum splitting can be realised. The presented metasurface is of importance to develop many metamaterial-based devices, such as tunable acoustic cloaks and acoustic switching devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA