Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 313: 116554, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137453

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue decoction (DBD) is a classic herbal decoction consisting of Astragali Radix (AR) and Angelica Sinensis Radix (ASR) with a 5:1 wt ratio, which can supplement 'blood' and 'qi' (vital energy) for the treatment of clinical diseases. According to Traditional Chinese Medicine (TCM) theory, dementia is induced by Blood deficiency and Qi weakness, which causes a decline in cognition. However, the underlying mechanisms of DBD improving cognition deficits in neurodegenerative disease are no clear. AIM OF THE STUDY: This study aims at revealing the underlying mechanisms of DBD plays a protective role in the cognitive deficits and pathology process of Alzheimer's disease (AD). MATERIALS AND METHODS: The APP/PS1 (Mo/HuAPP695swe/PS1-dE9) double transgenic mice were adopted as an experimental model of AD. Qualitative and quantitative analysis of 3 compounds in DBT was analyzed by HPLC. Morris water maze test, Golgi staining and electrophysiology assays were used to evaluate the effects of DBD on cognitive function and synaptic plasticity in APP/PS1 mice. Western blot, immunofluorescence and Thioflavin S staining were used for the pathological evaluation of AD. Monitoring the level of ATP, mitochondrial membrane potential, SOD and MDA to evaluate the mitochondrial function, and with the usage of qPCR and CHIP for the changes of histone post-translational modification. RESULTS: In the current study, we found that DBD could effectively attenuate memory impairments and enhance long-term potentiation (LTP) with concurrent increased expression of memory-associated proteins. DBD markedly decreased Aß accumulation in APP/PS1 mice by decreasing the phosphorylation of APP at the Thr668 level but not APP, PS1 or BACE1. Further studies demonstrated that DBD restored mitochondrial biogenesis deficits and mitochondrial dysfunction. Finally, the restored mitochondrial biogenesis and cognitive deficits are under HADC2-mediated histone H4 lysine 12 (H4K12) acetylation at the peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) and N-methyl-D-aspartate receptor type 2B (GluN2B) promoters. CONCLUSIONS: These findings reveal that DBD could ameliorate mitochondrial biogenesis and cognitive deficits by improving H4K12 acetylation. DBD might be a promising complementary drug candidate for AD treatment.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Histonas/metabolismo , Lisina/metabolismo , Lisina/uso terapêutico , Secretases da Proteína Precursora do Amiloide , Acetilação , Biogênese de Organelas , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Camundongos Transgênicos , Cognição , Processamento de Proteína Pós-Traducional , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
2.
Brain Behav Immun ; 98: 110-121, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403737

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease. Recently, neuroinflammation driven by CD4+ T cells has been involved in PD pathophysiology. Human and murine lymphocytes express all the five subtypes of dopamine receptors (DRs), DRD1 to DRD5. However, roles of DRs particularly DRD2 expressed on CD4+ T cells in PD remain elucidated. Global Drd1- or Drd2-knockout (Drd1-/- or Drd2-/-) mice or CD4+ T cell-specific Drd2-knockout (Drd2fl/fl/CD4Cre) mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD with the different mutants. On the 7th day following MPTP injection, mice were assessed for dopaminergic neurodegeneration, locomotor impairments, microglial activation, as well as CD4+ T-cell differentiation and function. Furthermore, in vitro CD4+ T cells were exposed to DRD2 agonist and antagonist and then differentiation and function of the cells were determined. MPTP induced dopaminergic neuronal loss in the nigrostriatal system, motor coordinative and behavioral impairments, microglial activation, and CD4+ T-cell polarization to pro-inflammatory T-helper (Th)1 and Th17 phenotypes. Importantly, either Drd2-/- or Drd2fl/fl/CD4Cre mice manifested more severe dopaminergic neurodegeneration, motor deficits, microglial activation, and CD4+ T-cell bias towards Th1 and Th17 phenotypes in response to MPTP, but Drd1-/- did not further alter MPTP intoxication. DRD2 agonist sumanirole inhibited shift of CD4+ T cells obtained from MPTP-intoxicated mice to Th1 and Th17 phenotypes and DRD2 antagonist L-741,626 reversed sumanirole effects. These findings suggest that DRD2 expressed on CD4+ T cells is protective against neuroinflammation and neurodegeneration in PD. Thus, developing a therapeutic strategy of stimulating DRD2 may be promising for mitigation of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Receptores de Dopamina D2 , Receptores de Dopamina D5 , Células Th17
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA