Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38853105

RESUMO

OBJECTIVES: To evaluate the hygroscopic expansion characterization of resin composite dies during thermal cycling, and their influence on the fracture resistance of dental ceramic materials as well as the effect of pre-immersion on these measurements. METHODS: Disc-shaped specimens (φ = 15.0 mm, h = 1.2 mm) and anatomical crown dies of four resin composites (epoxy, Z350, P60, G10) were fabricated. Disc-shaped samples were continuously soaked in distilled water and the volume expansion was measured at different time point by Archimedes method. Disc-shaped samples were pre-immersed for 0, 7, or 30 days, elastic modulus and hardness were measured using Nanoindentation test; thermal cycling (TC) test was performed (5 °C-55 °C, 104 cycles), and volume expansion during TC was measured. Four kinds of resin die with pre-immersion for 0, 7, or 30 days were cemented to 5Y-Z crown, or epoxy dies without pre-immersion were cemented to 5Y-Z, 3Y-Z and lithium disilicate glass (LDG) crowns, and load-to-failure testing was performed before and after TC. Finite element analysis (FEA) and fractography analysis were also conducted. RESULTS: The hygroscopic expansion was in the order: epoxy > Z350 > P60 > G10. Except for G10, the other three resin composites exhibited different degrees of hygroscopic expansion during TC. Only the elastic modulus and hardness of epoxy decreased after water storage. However, only the fracture loads of 5Y-Z and LDG crowns supported by epoxy dies were significantly decreased after TC. FEA showed a stress concentration at the cervical region of the crown after volume expansion of the die, leading to the increase of the peak stress at the crown during loading. SIGNIFICANCE: Only the hygroscopic expansion of epoxy dies caused by TC led to the decrease in the fracture resistance of the 5Y-Z and LDG crown, which may be related to the decrease in the elastic modulus of the epoxy die and the tensile stress caused by it.

2.
Plant Commun ; 5(1): 100681, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37660253

RESUMO

Bananas (Musa spp.) are monocotyledonous plants with high genetic diversity in the Musaceae family that are cultivated mainly in tropical and subtropical countries. The fruits are a popular food, and the plants themselves have diverse uses. Four genetic groups (genomes) are thought to have contributed to current banana cultivars: Musa acuminata (A genome), Musa balbisiana (B genome), Musa schizocarpa (S genome), and species of the Australimusa section (T genome). However, the T genome has not been effectively explored. Here, we present the high-quality TT genomes of two representative accessions, Abaca (Musa textilis), with high-quality natural fiber, and Utafun (Musa troglodytarum, Fe'i group), with abundant ß-carotene. Both the Abaca and Utafun assemblies comprise 10 pseudochromosomes, and their total genome sizes are 613 Mb and 619 Mb, respectively. Comparative genome analysis revealed that the larger size of the T genome is likely attributable to rapid expansion and slow removal of transposons. Compared with those of Musa AA or BB accessions or sisal (Agava sisalana), Abaca fibers exhibit superior mechanical properties, mainly because of their thicker cell walls with a higher content of cellulose, lignin, and hemicellulose. Expression of MusaCesA cellulose synthesis genes peaks earlier in Abaca than in AA or BB accessions during plant development, potentially leading to earlier cellulose accumulation during secondary cell wall formation. The Abaca-specific expressed gene MusaMYB26, which is directly regulated by MusaMYB61, may be an important regulator that promotes precocious expression of secondary cell wall MusaCesAs. Furthermore, MusaWRKY2 and MusaNAC68, which appear to be involved in regulating expression of MusaLAC and MusaCAD, may at least partially explain the high accumulation of lignin in Abaca. This work contributes to a better understanding of banana domestication and the diverse genetic resources in the Musaceae family, thus providing resources for Musa genetic improvement.


Assuntos
Musa , Musa/genética , Genoma de Planta , Lignina
3.
Genes (Basel) ; 14(3)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36981022

RESUMO

Acanthus ilicifolius is an important medicinal plant in mangrove forests, which is rich in secondary metabolites with various biological activities. In this study, we used transcriptomic analysis to obtain differentially expressed genes in the flavonoid metabolic pathway and metabolomic methods to detect changes in the types and content in the flavonoid metabolic synthesis pathway. The results showed that DEGs were identified in the mature roots vs. leaves comparison (9001 up-regulated and 8910 down-regulated), mature roots vs. stems comparison (5861 up-regulated and 7374 down-regulated), and mature stems vs. leaves comparison (10,837 up-regulated and 11,903 down-regulated). Furthermore, two AiCHS genes and four AiCHI genes were up-regulated in the mature roots vs. stems of mature A. ilicifolius, and were down-regulated in mature stems vs. leaves, which were highly expressed in the A. ilicifolius stems. A total of 215 differential metabolites were found in the roots vs. leaves of mature A. ilicifolius, 173 differential metabolites in the roots vs. stems, and 228 differential metabolites in the stems vs. leaves. The metabolomic results showed that some flavonoids in A. ilicifolius stems were higher than in the roots. A total of 18 flavonoid differential metabolites were detected in the roots, stems, and leaves of mature A. ilicifolius. In mature leaves, quercetin-3-O-glucoside-7-O-rhamnoside, gossypitrin, isoquercitrin, quercetin 3,7-bis-O-ß-D-glucoside, and isorhamnetin 3-O-ß-(2″-O-acetyl-ß-D-glucuronide) were found in a high content, while in mature roots, di-O-methylquercetin and isorhamnetin were the major compounds. The combined analysis of the metabolome and transcriptome revealed that DEGs and differential metabolites were related to flavonoid biosynthesis. This study provides a theoretical basis for analyzing the molecular mechanism of flavonoid synthesis in A. ilicifolius and provides a reference for further research and exploitation of its medicinal value.


Assuntos
Acanthaceae , Transcriptoma , Flavonoides , Metaboloma , Perfilação da Expressão Gênica/métodos , Acanthaceae/metabolismo
4.
EMBO J ; 42(10): e112053, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36762703

RESUMO

UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.


Assuntos
Peptídeos , Proteínas , Proteínas/metabolismo , Ribossomos/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo
5.
J Fungi (Basel) ; 8(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547607

RESUMO

Banana cultivars with the AAB genome group comprise diverse subgroups, such as Plantain, Silk, Iholena, and Pisang Raja, among others, which play an important role in food security in many developing countries. Some of these cultivars are susceptible to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), the most destructive pathogen threatening banana production worldwide, and some of them are still largely unknown. We evaluated the resistance of 37 banana genotypes, including Plantain, Silk, Iholena, Maia Maoli/Popoulu, Pisang Raja, Pome, and Mysore, to Foc TR4 under both greenhouse and field conditions. Genotypes from the Silk and Iholena subgroups were highly susceptible to Foc TR4. Pome and Mysore showed resistance and intermediate resistance, respectively. However, Pisang Raja ranged from susceptible to intermediate resistance. One cultivar from the Maia Maoli/Popoulu subgroup was highly susceptible, while the other displayed significant resistance. Most Plantain cultivars exhibited high resistance to Foc TR4, except two French types of cultivar, 'Uganda Plantain' and 'Njombe N°2', which were susceptible. The susceptibility to Foc TR4 of some of the AAB genotypes evaluated, especially Plantain and other cooking bananas, indicates that growers dependent on these varieties need to be included as part of the prevention and integrated Foc TR4 management strategies, as these genotypes play a crucial role in food security and livelihoods.

6.
PeerJ ; 10: e14351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389400

RESUMO

The timber species Eucalyptus camaldulensis is one of the most important in southern China. Therefore, it is essential to understand the photosynthetic pattern in eucalyptus leaves. In the present study, eighteen photosynthesis-related genes were analyzed using bioinformatics methods. The results indicated that there were ten differentially expressed ribose-5-phosphate isomerase genes (RPI), and six of them were up-regulated in the mature leaves compared to the young leaves, while others were down-regulated. The differential expression of four rubisco methyltransferase genes (RBCMT) were observed. Two of them were up-regulated, while two were down-regulated in mature leaves compared to young leaves. Furthermore, two ribulose-phosphate-3-epimerase genes (RPE) were up-regulated in the mature leaves compared to the young leaves. In contrast, two genes involved in triosephosphate isomerase (TIM) were down-regulated in mature leaves compared with young leaves. The current study provides basic information about the transcriptome of E. camaldulensis and lays a foundation for further research in developing and utilizing important photosynthetic genes.


Assuntos
Eucalyptus , Eucalyptus/genética , Transcriptoma/genética , Fotossíntese/genética , Folhas de Planta/genética , China
7.
Plant Dis ; 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35467941

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), has been considered as the most devastating disease affecting bananas (Musa spp.) worldwide. A highly virulent strain of Foc, known as tropical race 4 (TR4), has been detected in the southeast Asia in the 1990s, and has since spread to western Asia, Australia, the Middle East, southern Africa, and South America (Viljoen et al. 2020). Foc TR4 can cause severe yield losses in Cavendish (AAA), Gros Michel (AAA), Silk (AAB), Pisang Awak (ABB) and Bluggoe (ABB) bananas (Ploetz et al. 2006). However, cooking bananas such as plantain (AAB) and Matooke (AAA) bananas, appear to be resistant (Zuo et al. 2017). Iholena bananas (AAB), a subgroup of varieties related to plantains (also known as Pacific plantains), is an important staple food in the Pacific Islands where it was domesticated. It is also popular in Peru, probably due to its nutritional value (Kepler et al. 2011) and is wildly cultivated in other South American countries (Dita et al. 2013). In December 2019, typical symptoms of banana Fusarium wilt were observed on Iholena accession 'Pacific Plantain' (ITC0210) in experimental fields located in Dongguan, Guangdong Province of China. The symptoms included leaf yellowing and pseudostem splitting. The vascular tissue inside the pseudostems was dark red to brown, and the inner rhizomes yellowish-brown. Vascular tissues from three diseased plants were sampled aseptically and placed on potato dextrose agar (PDA) containing 0.05 g/liter kanamycin. Fungal colonies typical of F. oxysporum developed rapidly, with purple-tinged white aerial mycelia and an abundance of microconidia borne in false heads on short microconidia (Nelson et al. 1983). Chlamydospores were produced singly or in pairs in hyphae and macroconidia. Molecular identification was performed using Foc race 4-specific primers (Lin et al. 2009), Foc TR4-specific primers (Dita et al. 2010), Foc race 1 and Foc STR4-specific primers (Ndayihanzamaso et al. 2020). Amplicons of expected sizes were obtained for Foc TR4 and race 4, but not for Foc race 1 and STR4. Sequencing of the ITS and 18S rDNA from the three Iholena isolates and BLAST result showed a 100% similarity to the Foc TR4 reference sequences in GenBank (Foc II5, PRJNA73539 and PRJNA56513) to prove that the isolates were Foc TR4. Pathogenicity of the three isolates from Iholena bananas was determined by infecting 4-month-old Cavendish cv. 'Grand Nain' bananas and three Iholena accessions, 'Pacific Plantain' 'Tigua' and 'Uzakan', under greenhouse conditions by root immersion in a Foc conidial suspension and soil drenching at 106 conidia/ml (Dita, 2010). Control plants were treated with sterile distilled water. Three replications of five plantlets were used for each accession. After 35 days, the inoculated plantlets developed typical Fusarium wilt symptoms such as yellowing of the older leaves and discoloration of the inner rhizome. The control plants did not develop symptoms. To complete Koch's postulates, the fungus was re-isolated from inoculated plants and identified as Foc TR4 by PCR (Dita et al, 2010). The susceptibility of 'Tigua' and 'Uzakan' was also confirmed in Foc TR4-infested field trials, with both accessions developing severe Fusarium wilt symptoms. The susceptibility of Iholena bananas to Foc TR4 is of significant concern to all countries where this subgroup is cultivated for major food source, including Peru and other South American countries.

8.
Gene ; 824: 146396, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35278632

RESUMO

Eucalyptus (including Eucalyptus grandis) is an excellent wood forest tree species that provides a large number of plant fiber raw materials for the paper and timber industries. Cellulose, an essential structural component in plant cell walls, is a renewable biomass resource that plays a very important role in nature. There is still a lack of research on the role of gene regulation in cellulose synthesis. To study the genes of cellulose synthesis, the wood chemical indexes of Eucalyptus grandis were analyzed by taking three different parts from the main stem of Eucalyptus grandis as raw materials. The results showed that the cellulose content in the middle of the trunk was significantly higher than that at the chest diameter and at the upper part of the trunk. A total of 296 differentially expressed genes (DEGs) were obtained from the three site by transcriptome, and 19 key candidate genes were related to the synthesis of cellulose in Eucalyptus grandis. EgrEXP1 and EgrHEX4 were overexpressed in 84 K poplar, the content of cellulose and lignin in genetically modified plants was significantly higher than that of wild type 84 K poplar. Also, the average plant height and average root count were significantly higher than those of control plants, and the average diameter of the middle and stem bases were significantly larger than those of control plants. In this study, the genes related to cellulose synthesis in Eucalyptus grandis are studied, which serve as a strong foundation for understanding the molecular regulation of cellulose synthesis in plants.


Assuntos
Eucalyptus , Celulose/genética , Celulose/metabolismo , Eucalyptus/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/genética , Lignina/metabolismo , Madeira/genética , Madeira/metabolismo
9.
PeerJ ; 10: e12954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233295

RESUMO

BACKGROUND: Wind, an important abiotic stress factor, affects forests in coastal areas, causes tree damage and timber loss. METHODS: Two genotypes of Eucalyptus camaldulensis-strong wind-resistant CA5 and weak wind-resistant C037 were used for RNA-seq analysis to screen for candidate wind-resistance genes and transcription factors (TFs) by comparing the transcriptome analysis of the two varieties in response to wind stress. RESULTS: It showed that 7061 differentially expressed unigenes could be annotated including 4,110 up-regulated unigenes and 2,951 down-regulated unigenes. Gene Ontology (GO) analysis revealed that six cellulose pathways were involved in response to wind stress. The unigenes in phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways were found to be differentially expressed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Moreover, 37 differentially expressed genes were functionally annotated to be involved in the secondary metabolism of phenylalanine (ko00940). Seventy-eight TFs related to the regulating cellulose and lignin synthesis were expressed differently from the various treatments. The expressions of C3H, POX, MYB, NAC, Gene008307, and Gene011799 were significantly upregulated in CA5. Overall, the main response of Eucalyptus to wind stress was associated with cell wall biosynthesis; key genes of cellulose and lignin biosynthesis pathways and related TFs were involved in the tree response to wind stress.


Assuntos
Eucalyptus , Transcriptoma , Transcriptoma/genética , Eucalyptus/genética , Lignina/genética , Vento , Perfilação da Expressão Gênica
10.
Dev Cell ; 53(4): 444-457.e5, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32330424

RESUMO

The redox-based protein S-nitrosylation is a conserved mechanism modulating nitric oxide (NO) signaling and has been considered mainly as a non-enzymatic reaction. S-nitrosylation is regulated by the intracellular NO level that is tightly controlled by S-nitrosoglutathione reductase (GSNOR). However, the molecular mechanisms regulating S-nitrosylation selectivity remain elusive. Here, we characterize an Arabidopsis "repressor of" gsnor1 (rog1) mutation that specifically suppresses the gsnor1 mutant phenotype. ROG1, identical to the non-canonical catalase, CAT3, is a transnitrosylase that specifically modifies GSNOR1 at Cys-10. The transnitrosylase activity of ROG1 is regulated by a unique and highly conserved Cys-343 residue. A ROG1C343T mutant displays increased catalase but decreased transnitrosylase activities. Consistent with these results, the rog1 mutation compromises responses to NO under both normal and stress conditions. We propose that ROG1 functions as a transnitrosylase to regulate the NO-based redox signaling in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa Redutase/metabolismo , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Catalase/química , Catalase/genética , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Glutationa Redutase/química , Glutationa Redutase/genética , Mutação , Oxirredução , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
11.
Plant Direct ; 3(2): e00110, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31245758

RESUMO

Nitric oxide (NO) is a signal molecule in plants and animals. Arabidopsis GSNO reductase1 (AtGSNOR1) catalyzes metabolism of S-nitrosoglutathione (GSNO) which is a major biologically active NO species. The GSNOR1 loss-of-function mutant gsnor1-3 overaccumulates GSNO with inherent high S-nitrosylation level and resistance to the oxidative stress inducer paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride). Here, we report the characterization of dgl1-3 as a genetic suppressor of gsnor1-3. DGL1 encodes a subunit of the oligosaccharyltransferse (OST) complex which catalyzes the formation of N-glycosidic bonds in N-glycosylation. The fact that dgl1-3 repressed the paraquat resistance of gsnor1-3 meanwhile gsnor1-3 rescued the embryo-lethal and post-embryonic development defect of dgl1-3 reminded us the possibility that S-nitrosylation and N-glycosylation crosstalk with each other through co-substrates. By enriching glycoproteins in gsnor1-3 and mass spectrometry analysis, TGG2 (thioglucoside glucohydrolase2) was identified as one of co-substrates with high degradation rate and elevated N-glycosylation level in gsnor1-3 ost3/6. The S-nitrosylation and N-glycosylation profiles were also modified in dgl1-3 and gsnor1-3. Thereby, we propose a linkage between S-nitrosylation and N-glycosylation through co-substrates.

12.
Mol Cell ; 71(1): 142-154.e6, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30008318

RESUMO

Nitric oxide (NO) regulates diverse cellular signaling through S-nitrosylation of specific Cys residues of target proteins. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by GSNO reductase (GSNOR), a highly conserved master regulator of NO signaling. However, little is known about how the activity of GSNOR is regulated. Here, we show that S-nitrosylation induces selective autophagy of Arabidopsis GSNOR1 during hypoxia responses. S-nitrosylation of GSNOR1 at Cys-10 induces conformational changes, exposing its AUTOPHAGY-RELATED8 (ATG8)-interacting motif (AIM) accessible by autophagy machinery. Upon binding by ATG8, GSNOR1 is recruited into the autophagosome and degraded in an AIM-dependent manner. Physiologically, the S-nitrosylation-induced selective autophagy of GSNOR1 is relevant to hypoxia responses. Our discovery reveals a unique mechanism by which S-nitrosylation mediates selective autophagy of GSNOR1, thereby establishing a molecular link between NO signaling and autophagy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Autofagia , Glutationa Redutase/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Hipóxia Celular , Glutationa Redutase/genética
13.
J Integr Plant Biol ; 58(7): 669-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26564029

RESUMO

In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Genes de Plantas , Germinação/genética , Sementes/embriologia , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Mutação/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/genética
14.
Cytokine ; 60(1): 171-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22688014

RESUMO

Interleukin (IL)-23 is an essential cytokine involved in the expansion of a novel CD4(+) T helper subset known as Th17, which has been implicated in the pathogenesis of periodontitis recently. Our previous study first identified specialized human periodontal ligament fibroblasts (hPDLFs) as an important production source of IL-23. The present study was undertaken to investigate the effects of the pro-inflammatory and Th17-polarizing mediator IL-1ß on hPDLFs-mediated IL-23 p19 production, and the molecular mechanism involved. IL-23 p19 expression was in situ detected in IL-1ß-stimulated hPDLFs. IL-1ß was capable of stimulating the expression of IL-23 p19 mRNA and protein in cultured hPDLFs, which was attenuated by IL-1 receptor antagonist (IL-1Ra) or myeloid differentiation primary response gene 88 (MyD88) inhibitor. Meanwhile, inhibitors of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), activator protein-1 (AP-1), or nuclear factor-kappaB (NF-κB) significantly suppressed IL-23 p19 production from IL-1ß-stimulated hPDLFs. Moreover, IL-1ß-initiated AP-1 activation was blocked by p38 MAPK, ERK 1/2, or JNK inhibition, whereas NF-κB activity remained unaltered by all the above pathway specific inhibitors. Thus, these results provide evidence that Th17-polarizing mediator IL-1ß up-regulated the expression of IL-23 p19 in hPDLFs via NF-κB signaling and MAPKs-dependent AP-1 pathways. Taken together, our findings indicate that IL-1Ra may be used therapeutically to inhibit Th17-driven inflammatory diseases including periodontitis.


Assuntos
Fibroblastos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Subunidade p19 da Interleucina-23/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA/metabolismo , Antracenos/farmacologia , Western Blotting , Células Cultivadas , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Subunidade p19 da Interleucina-23/genética , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Piridinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Mol Immunol ; 48(4): 647-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21145111

RESUMO

Interleukin (IL)-23 is an essential cytokine involved in the expansion of a novel CD4(+) T helper subset known as Th17, which has been implicated in the pathogenesis of periodontitis recently. This study hypothesised that Th17 signature cytokine IL-17 may target specialised human periodontal ligament fibroblasts (hPDLFs) for production of IL-23 p19, a key subunit of IL-23. Primary hPDLFs had steady expression of IL-17 receptor (IL-17R) mRNA and surface-bound protein. IL-17 was capable of stimulating the expression of IL-23 p19 mRNA and protein in cultured hPDLFs, which was attenuated by IL-17 or IL-17R neutralising antibodies. In accordance with the enhanced expression of IL-23 p19, IL-17 stimulation resulted in rapid activation of Akt, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), nuclear factor-kappaB (NF-κB), and activator protein-1 (AP-1) in hPDLFs. Inhibitors of Akt, p38 MAPK, ERK 1/2, or NF-κB significantly suppressed, whereas blocking JNK and AP-1 substantially augmented IL-23 p19 production from IL-17-stimulated hPDLFs. Moreover, IL-17-initiated NF-κB activation was blocked by Akt, p38 MAPK, or ERK 1/2 inhibition, while AP-1 activity was specifically abrogated by JNK inhibition. Thus, these results provide evidence that hPDLFs are a target of Th17, and that IL-17 appears to up-regulate the expression of IL-23 p19 via a homeostatic mechanism involving Akt-, p38 MAPK-, and ERK 1/2-dependent NF-κB signalling versus the JNK/AP-1 pathway. Taken together, our findings suggest that disruption of the interaction between IL-17 and IL-23 may be a potential therapeutic approach in the treatment of periodontitis.


Assuntos
Fibroblastos/enzimologia , Subunidade p19 da Interleucina-23/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ligamento Periodontal/citologia , Receptores de Interleucina-17/genética , Fator de Transcrição AP-1/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-17/farmacologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-17/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA