Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780388

RESUMO

Atom-interferometer gyroscopes have attracted much attention for their long-term stability and extremely low drift. For such high-precision instruments, self-calibration to achieve an absolute rotation measurement is critical. In this work, we propose and demonstrate the self-calibration of an atom-interferometer gyroscope. This calibration is realized by using the detuning of the laser frequency to control the atomic velocity, thus modulating the scale factor of the gyroscope. The modulation determines the order and the initial phase of the interference stripe, thus eliminating the ambiguity caused by the periodicity of the interferometric signal. This self-calibration method is validated through a measurement of the Earth's rotation rate, and a relative uncertainty of 162 ppm is achieved. Long-term stable and self-calibrated atom-interferometer gyroscopes have important applications in the fields of fundamental physics, geophysics, and long-time navigation.

2.
Radiat Oncol ; 19(1): 55, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735947

RESUMO

BACKGROUND: Currently, automatic esophagus segmentation remains a challenging task due to its small size, low contrast, and large shape variation. We aimed to improve the performance of esophagus segmentation in deep learning by applying a strategy that involves locating the object first and then performing the segmentation task. METHODS: A total of 100 cases with thoracic computed tomography scans from two publicly available datasets were used in this study. A modified CenterNet, an object location network, was employed to locate the center of the esophagus for each slice. Subsequently, the 3D U-net and 2D U-net_coarse models were trained to segment the esophagus based on the predicted object center. A 2D U-net_fine model was trained based on the updated object center according to the 3D U-net model. The dice similarity coefficient and the 95% Hausdorff distance were used as quantitative evaluation indexes for the delineation performance. The characteristics of the automatically delineated esophageal contours by the 2D U-net and 3D U-net models were summarized. Additionally, the impact of the accuracy of object localization on the delineation performance was analyzed. Finally, the delineation performance in different segments of the esophagus was also summarized. RESULTS: The mean dice coefficient of the 3D U-net, 2D U-net_coarse, and 2D U-net_fine models were 0.77, 0.81, and 0.82, respectively. The 95% Hausdorff distance for the above models was 6.55, 3.57, and 3.76, respectively. Compared with the 2D U-net, the 3D U-net has a lower incidence of delineating wrong objects and a higher incidence of missing objects. After using the fine object center, the average dice coefficient was improved by 5.5% in the cases with a dice coefficient less than 0.75, while that value was only 0.3% in the cases with a dice coefficient greater than 0.75. The dice coefficients were lower for the esophagus between the orifice of the inferior and the pulmonary bifurcation compared with the other regions. CONCLUSION: The 3D U-net model tended to delineate fewer incorrect objects but also miss more objects. Two-stage strategy with accurate object location could enhance the robustness of the segmentation model and significantly improve the esophageal delineation performance, especially for cases with poor delineation results.


Assuntos
Aprendizado Profundo , Esôfago , Humanos , Esôfago/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
3.
J Adv Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38724006

RESUMO

INTRODUCTION: Ovarian cancer (OC) is known for its high mortality rate. Although sodium citrate has anti-tumor effects in various cancers, its effect and mechanism in OC remain unclear. OBJECTIVES: To analyze the inhibitory effect of sodium citrate on ovarian cancer cells and the underlying mechanism. METHODS: Cell apoptosis was examined by TUNEL staining, flow cytometry, and ferroptosis was examined intracellular Fe2+, MDA, LPO assays, respectively. Cell metabolism was examined by OCR and ECAR measurements. Immunoblotting and immunoprecipitation were used to elucidate the mechanism. RESULTS: This study suggested that sodium citrate not only promoted ovarian cancer cell apoptosis but also triggeredferroptosis, manifested as elevated levels of Fe2+, LPO, MDA andlipid ROS production. On one hand, sodium citrate treatment led to a decrease of Ca2+ content in the cytosol by chelatingCa2+, which further inhibited the Ca2+/CAMKK2/AKT/mTOR signaling, thereby suppressing HIF1α-dependent glycolysis pathway and inducing cell apoptosis. On the other hand, the chelation of Ca2+ by sodium citrate resulted in inactivation of CAMKK2 and AMPK, leading to increase of NCOA4-mediated ferritinophagy, causing increased intracellular Fe2+ levels. More importantly, the inhibition of Ca2+/CAMKK2/AMPK signaling pathway reduced the activity of the MCU and Ca2+ concentration within the mitochondria, resulting in an increase in mitochondrial ROS. Additionally, metabolomic analysis indicated that sodium citrate treatment significantly increased de novo lipid synthesis. Altogether, these factors contributed to ferroptosis. As expected, Ca2+ supplementation successfully reversed the cell death and decreased tumor growth induced by sodium citrate. Inspiringly, it was found that coadministration of sodium citrate increased the sensitivity of OC cells to chemo-drugs. CONCLUSION: These results revealed that the sodium citrate exerted its anti-cancer activity by inhibiting Ca2+/CAMKK2-dependent cell apoptosis and ferroptosis. Sodium citrate will hopefully serve as a prospective compound for OC treatment and for improvingthe efficacy of chemo-drugs.

4.
J Environ Manage ; 359: 120979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692033

RESUMO

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Assuntos
Carvão Vegetal , Ferro , Espécies Reativas de Oxigênio , Tetraciclina , Águas Residuárias , Tetraciclina/química , Carvão Vegetal/química , Espécies Reativas de Oxigênio/química , Águas Residuárias/química , Ferro/química , Poluentes Químicos da Água/química , Peróxidos/química , Transporte de Elétrons
5.
Gastroenterol Res Pract ; 2024: 1458297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774521

RESUMO

Background: Distal malignant biliary obstruction (DMBO) can result in obstructive jaundice. Endoscopic ultrasound- (EUS-) guided biliary drainage (EUS-BD) has been an alternative for DMBO after failed ERCP. Aim: To compare the efficacy and safety between antegrade and transluminal approaches in patients with unresectable DMBO when ERCP failed. Methods: Patients with DMBO leading to obstructive jaundice after failed ERCP were enrolled in this study. We retrospectively evaluated the safety and efficacy between EUS-guided transluminal stenting (TLS group) and antegrade stenting (AGS group). Results: 82 patients were enrolled, of which 45 patients were in TLS group and 37 in AGS group. There were no statistical differences in the malignancy type, baseline common bile duct diameter, total bilirubin level, reason for EUS-BD, and history of biliary drainage between TLS and AGS groups. The technical success rate was statistically higher in TLS group than in AGS group (97.8 vs. 81.1%, P = 0.031). There were no statistical differences in clinical success rate, procedure-related adverse events, stent migration rate, stent dysfunction rate, reintervention rate, and overall patient survival time between TLS and AGS groups. The median time to stent dysfunction or patient death in TLS and AGS groups was 53 and 81 days, respectively (P = 0.017). Conclusions: Although AGS had a lower technical success rate than TLS, it was superior to TLS in stent patency in patients with DMBO.

6.
Signal Transduct Target Ther ; 9(1): 78, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565561

RESUMO

Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Dependovirus/genética , Vetores Genéticos/genética , Terapia Genética
7.
Sci Total Environ ; 927: 172010, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575020

RESUMO

Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.


Assuntos
Aquicultura , Bivalves , Animais , China , Bivalves/genética , Bivalves/fisiologia , Mudança Climática , Polimorfismo de Nucleotídeo Único , Adaptação Fisiológica/genética
8.
Adv Mater ; : e2313381, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647215

RESUMO

Aggregation-induced emission luminogen (AIEgen)-functionalized organic-inorganic hybrid nanoparticles (OINPs) are an emerging category of multifunctional nanomaterials with vast potential applications. The spatial arrangement and positioning of AIEgens and inorganic compounds in AIEgen-functionalized OINPs determine the structures, properties, and functionalities of the self-assembled nanomaterials. In this work, a facile and general emulsion self-assembly tactic for synthesizing well-defined AIEgen-functionalized OINPs is proposed by coassembling alkane chain-functionalized inorganic nanoparticles with hydrophobic organic AIEgens. As a proof of concept, the self-assembly and structural evolution of plasmonic-fluorescent hybrid nanoparticles (PFNPs) from concentric circle to core shell and then to Janus structures is demonstrated by using alkane chain-modified AuNPs and AIEgens as building blocks. The spatial position of AuNPs in the signal nanocomposite is controlled by varying the alkane ligand length and density on the AuNP surface. The mechanism behind the formation of various PFNP nanostructures is also elucidated through experiments and theoretical simulation. The obtained PFNPs with diverse structures exhibit spatially tunable optical and photothermal properties for advanced applications in multicolor and multimode immunolabeling and photothermal sterilization. This work presents an innovative synthetic approach of constructing AIEgen-functionalized OINPs with diverse structures, compositions, and functionalities, thereby championing the progressive development of these OINPs.

9.
Langmuir ; 40(12): 6363-6374, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470241

RESUMO

The programmed self-assembly of patchy nanoparticles (NPs) through a bottom-up approach is an efficient strategy for producing highly organized materials with a predetermined architecture. Herein, we report the preparation of di- and trivalent silica NPs with polystyrene (PS)/poly(4-vinylbenzyl azide) (PVBA) patches and assemble them in a THF mixture by lowering the solvent quality. Silica-PS/PVBA colloidal hybrid clusters were synthesized through the seeded growth emulsion copolymerization of styrene and 4-vinylbenzyl azide (VBA) in varying ratios. Subsequently, macromolecules on silica NPs originating from the copolymerization of growing PS or PVBA chains with the surface-grafted MMS compatibilizer are engineered by fine-tuning of polymer compositions or adjustment of solvent qualities. Moreover, multistage silica regrowth of tripod and tetrapod allowed a fine control of the patch-to-particle size ratio ranging from 0.69 to 1.54. Intriguingly, patchy silica NPs (1-, 2-, 3-PSNs) rather than hybrid clusters are successfully used as templates for multistep regrowth experiments, leading to the formation of silica NPs with a new morphology and size controllable PVBA/PS patches. Last but not least, combined with mesoscale dynamics simulations, the self-assembly kinetics of 2-PSN and 3-PSN into linear colloidal polymers and honeycomb-like lattices are studied. This work paves a new avenue for constructing colloidal polymers with a well-defined sequence and colloidal crystals with a predetermined architecture.

10.
J Colloid Interface Sci ; 663: 1-8, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38387182

RESUMO

We developed a new method to synthesize polyethylene glycol modified ultra small iron embedded in mesoporous carbon nanoparticle (C/Fe-PEG NP) for hydrogen (H2) assisted photothermal synergistic therapy. Herein, we use a simple in-situ reduction method to obtain the C/Fe NP in one-step carbonizing process, which is further modified by the biocompatible polyethylene glycol (PEG) on the surface of C/Fe NP to acquire high stability in physiological solutions. Utilizing the excellent photothermal property from the mesoporous carbon and the controllable H2 release property in the weakly acidic tumor microenvironment by the ultra-small Fe, the obtained C/Fe-PEG NPs can effective kill the cancer cells, meanwhile, protect normal cells without drugs. This selective anti-cancer mechanism of C/Fe-PEG NPs may because the produced H2 selective change the mitochondrial energy metabolism. In vivo results prove that the C/Fe-PEG NPs achieve excellent tumor ablation therapeutic effect and normal tissue protecting ability benefit from the H2-assisted photothermal therapy, promising the use of novel nanomaterials with more safety method for future cancer therapy.


Assuntos
Nanopartículas , Terapia Fototérmica , Ferro/farmacologia , Fototerapia , Polietilenoglicóis , Carbono/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico
11.
Cancer Biomark ; 40(1): 95-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306025

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common form of cancer, with rectal cancer accounting for approximately one-third of all cases. Among rectal cancers, 95% are classified as rectal adenocarcinoma (READ). Emerging evidence suggests that long noncoding RNAs (lncRNAs) play a significant role in the development and progression of various cancers. In our study, we aimed to identify differentially expressed lncRNAs potentially associated with m6A and establish a risk assessment model to predict clinical outcomes for READ patients. METHODS: The READ dataset from the TCGA database was utilized in this study to synergistically and logically integrate m6A and lncRNA, while employing bioinformatics technology for the identification of suitable biomarkers. A risk prediction model comprising m6A-associated lncRNAs was constructed to investigate the prognostic, diagnostic, and biological functional relevance of these m6A-related lncRNAs. RESULTS: Our research builds a composed of three related to m6A lncRNA rectal gland cancer prognosis model, and the model has been proved in the multi-dimensional can serve as the potential of the prognosis of rectal gland cancer biomarkers. Our study constructed a prognostic model of rectal adenocarcinoma consisting of three related m6A lncRNAs: linc00702, ac106900.1 and al583785.1. CONCLUSION: The model has been validated as a potential prognostic biomarker for rectal cancer in multiple dimensions, aiming to provide clinicians with an indicator to assess the duration of straight adenocarcinoma. This enables early detection of rectal cancer and offers a promising target for immunotherapy.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Biologia Computacional , RNA Longo não Codificante , Neoplasias Retais , Humanos , Neoplasias Retais/genética , Neoplasias Retais/imunologia , Neoplasias Retais/patologia , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Biologia Computacional/métodos , Prognóstico , Biomarcadores Tumorais/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino
12.
Sci Adv ; 10(5): eadj3808, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306424

RESUMO

G protein-coupled receptor 39 (GPR39) senses the change of extracellular divalent zinc ion and signals through multiple G proteins to a broad spectrum of downstream effectors. Here, we found that GPR39 was prevalent at inhibitory synapses of spinal cord somatostatin-positive (SOM+) interneurons, a mechanosensitive subpopulation that is critical for the conveyance of mechanical pain. GPR39 complexed specifically with inhibitory glycine receptors (GlyRs) and helped maintain glycinergic transmission in a manner independent of G protein signalings. Targeted knockdown of GPR39 in SOM+ interneurons reduced the glycinergic inhibition and facilitated the excitatory output from SOM+ interneurons to spinoparabrachial neurons that engaged superspinal neural circuits encoding both the sensory discriminative and affective motivational domains of pain experience. Our data showed that pharmacological activation of GPR39 or augmenting GPR39 interaction with GlyRs at the spinal level effectively alleviated the sensory and affective pain induced by complete Freund's adjuvant and implicated GPR39 as a promising therapeutic target for the treatment of inflammatory mechanical pain.


Assuntos
Dor , Receptores Acoplados a Proteínas G , Humanos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo
14.
Sci China Life Sci ; 67(3): 435-448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38289421

RESUMO

Tocopherol is an important lipid-soluble antioxidant beneficial for both human health and plant growth. Here, we fine mapped a major QTL-qVE1 affecting γ-tocopherol content in maize kernel, positionally cloned and confirmed the underlying gene ZmPORB1 (por1), as a protochlorophyllide oxidoreductase. A 13.7 kb insertion reduced the tocopherol and chlorophyll content, and the photosynthetic activity by repressing ZmPORB1 expression in embryos of NIL-K22, but did not affect the levels of the tocopherol precursors HGA (homogentisic acid) and PMP (phytyl monophosphate). Furthermore, ZmPORB1 is inducible by low oxygen and light, thereby involved in the hypoxia response in developing embryos. Concurrent with natural hypoxia in embryos, the redox state has been changed with NO increasing and H2O2 decreasing, which lowered γ-tocopherol content via scavenging reactive nitrogen species. In conclusion, we proposed that the lower light-harvesting chlorophyll content weakened embryo photosynthesis, leading to fewer oxygen supplies and consequently diverse hypoxic responses including an elevated γ-tocopherol consumption. Our findings shed light on the mechanism for fine-tuning endogenous oxygen concentration in the maize embryo through a novel feedback pathway involving the light and low oxygen regulation of ZmPORB1 expression and chlorophyll content.


Assuntos
Tocoferóis , Zea mays , Humanos , Tocoferóis/metabolismo , Zea mays/genética , Zea mays/metabolismo , gama-Tocoferol/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese/genética , Clorofila/metabolismo , Hipóxia , Oxigênio/metabolismo
15.
Hortic Res ; 11(1): uhad260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288254

RESUMO

Grapes are globally recognized as economically significant fruit trees. Among grape varieties, Thompson Seedless holds paramount influence for fresh consumption and for extensive applications in winemaking, drying, and juicing. This variety is one of the most efficient genotypes for grape genetic modification. However, the lack of a high-quality genome has impeded effective breeding efforts. Here, we present the high-quality reference genome of Thompson Seedless with all 19 chromosomes represented as 19 contiguous sequences (N50 = 27.1 Mb) with zero gaps and prediction of all telomeres and centromeres. Compared with the previous assembly (TSv1 version), the new assembly incorporates an additional 31.5 Mb of high-quality sequenced data with annotation of a total of 30 397 protein-coding genes. We also performed a meticulous analysis to identify nucleotide-binding leucine-rich repeat genes (NLRs) in Thompson Seedless and two wild grape varieties renowned for their disease resistance. Our analysis revealed a significant reduction in the number of two types of NLRs, TIR-NB-LRR (TNL) and CC-NB-LRR (CNL), in Thompson Seedless, which may have led to its sensitivity to many fungal diseases, such as powdery mildew, and an increase in the number of a third type, RPW8 (resistance to powdery mildew 8)-NB-LRR (RNL). Subsequently, transcriptome analysis showed significant enrichment of NLRs during powdery mildew infection, emphasizing the pivotal role of these elements in grapevine's defense against powdery mildew. The successful assembly of a high-quality Thompson Seedless reference genome significantly contributes to grape genomics research, providing insight into the importance of seedlessness, disease resistance, and color traits, and these data can be used to facilitate grape molecular breeding efforts.

16.
Int J Biol Macromol ; 254(Pt 3): 127994, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952800

RESUMO

Although sodium alginate (SA) is frequently utilized because of its good gelling properties, the substance's dearth of adsorption active sites prevents it from effectively removing heavy metals. Herein, SA was used as the base material to form a cross-linked structure with Fe3+ and Mg2+, and gel beads with a diameter of 2.0 ± 0.1 mm with specific adsorption on As(V) were synthesized as adsorbent (Fe/Mg-SA). Fe/Mg-SA was systematically characterized, and its adsorption properties were investigated by varying several conditions. Fe/Mg-SA had a wide pH application range. The adsorption kinetics revealed that a quasi-secondary kinetic model was followed. The adsorption process is linked to the complexation of hydroxyl and AsO43-, chemisorption predominated the adsorption process. The maximal adsorption capacity of Fe/Mg-SA is determined by fitting the Langmuir model to be 37.4 mg/g. Compared to other adsorbents, it is simpler to synthesis, more effective and cheaper. Each treatment of 1 m3 wastewater of Fe/Mg-SA only costs ¥ 38.612. The novel gel beads synthesized provides a better option for purifying groundwater contaminated with As(V).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Alginatos/química , Adsorção , Porosidade , Metais Pesados/química , Géis/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
17.
Water Res ; 250: 121049, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157599

RESUMO

Human activities have led to an alarming increase in pollution, resulting in widespread water contamination. A comprehensive understanding of the quantitative relationship between anthropogenic pollutant discharges and the escalating anthropogenic disturbances and environmental efforts is crucial for effective water quality management. Here we establish a Model for Estimating Anthropogenic pollutaNts diScharges (MEANS) and simulate the long-term dynamics of various types of anthropogenic discharges in China based on an unprecedented spatio-temporal dynamic parameter dataset. Our findings reveal that from 1980 to 2020, anthropogenic discharges exhibited an overall trend of initially increasing and subsequently decreasing, with the peak occurring around 2005. During this period, the dominant pollution sources in China shifted from urban to rural areas, thereby driving the transition of hotspot pollutants from nitrogen to phosphorus in the eastern regions. The most significant drivers of anthropogenic pollutant discharges gradually shifted from population size and dietary structure to wastewater treatment and agricultural factors. Furthermore, we observed that a significant portion of China's regions still exceed the safety thresholds for pollutant discharges, with excessive levels of total phosphorus (TP) being particularly severe. These findings highlight the need for flexible management strategies in the future to address specific pollution levels and hotspots in different regions. Our study underscores the importance of considering the complex interplay between anthropogenic disturbances, environmental efforts, and long-term anthropogenic pollutant discharges for effective water pollution control.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Saneamento , Qualidade da Água , China , Fósforo/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , Dieta
18.
Langmuir ; 39(48): 17560-17561, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971398
19.
Environ Res ; 239(Pt 1): 117408, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838205

RESUMO

With the widespread use of sulfonamide antibiotics (SAs), SAs are detected as residues in aquatic environments, posing a serious threat to human life and safety. Because of their high water solubility, fast transmission rate, and strong antibacterial properties, the safe disposal of SAs has become a key constraint for water quality assurance. Therefore, an ultrasound (US)-assisted zero-valent iron (ZVI)/persulfate (PS) system was proposed to explore the rapid and effective degradation of SAs. Comparative experiments were performed to study the removal of sulfadiazine (SDZ) by US, ZVI, PS, US/ZVI, US/PS, ZVI/PS, and US-ZVI/PS systems, respectively. Experimental results indicated that the highest removal efficiency of SDZ was ahieved in US-ZVI/PS system (97.4%), which were 2-44 times higher than that in other systems. Furthermore, the degradation efficiency of five typical SAs was achieved over 95%, demonstrating the effectiveness of the US ZVI/PS system for SAs removal. Also, quantum chemical computations for potential reactive sites of SAs and intermediate product detection by HPLC‒MS/MS were performed. The radical attack on active sites of SAs, such as N atom (number 7), was the main reason for SAs removal in US-ZVI/PS system. Besides, the common degradation pathways of six typical SAs were defined as S-N bond cleavage, C-N bond cleavage, benzene ring hydroxylation, aniline oxidation, and R substituent oxidation. Interestingly, the unique pathway of "SO2 group extraction" was observed in the degradation of six-membered ring SAs. Therefore, the US-ZVI/PS system is a promising and cost-effective method for the removal of SAs and other refractory pollutants.


Assuntos
Antibacterianos , Espectrometria de Massas em Tandem , Humanos , Sulfanilamida , Sulfadiazina , Sulfonamidas , Ferro
20.
Cancer Cell Int ; 23(1): 230, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794386

RESUMO

BACKGROUND: The purpose of this study was to investigate the role of hsa_circRNA_102051 in colorectal cancer (CRC) and its effect on the stemness of tumor cells. METHODS: CircRNA microarray was under analysis to screen differentially expressed novel circRNAs in the pathology of CRC. Quantitative real-time PCR was used to detect the relative RNA expression in CRC cells and samples. The effects of hsa_circRNA_102051 on biological functions in CRC cells were accessed both in vitro and in vivo. FISH, RIP and luciferase reporter assay were conducted to confirm the regulatory correlations between hsa_circRNA_102051 and miR-203a, as well as miR-203a and BPTF. Xenograft models were applied to further verify the impacts and fluctuations of hsa_circRNA_102051/miR-203a/BPTF. Moreover, the mechanism how hsa_circRNA_102051 affected the Notch signals was also elucidated. RESULTS: Hsa_circRNA_102051 was up-regulated in CRC tissues and cell lines, capable to promote the growth and invasion of CRC. In addition, hsa_circRNA_102051 could enhance stemness of CRC cells. BPTF was identified as downstream factors of hsa_circRNA_102051, and miR-203a was determined directly targeting both hsa_circRNA_102051 and BPTF as an intermediate regulator. Hsa_circRNA_102051 in CRC could block miR-203a expression, and subsequently activated BPTF. Hsa_circRNA_102051/miR-203a/BPTF axis modulated stemness of CRC cells by affecting Notch pathway. CONCLUSIONS: Our findings provided new clues that hsa_circRNA_102051 might be a potential predictive or prognostic factor in CRC, which induced the fluctuation of downstream miR-203a/BPTF, and subsequently influenced tumor growth, activities and stemness. Thereinto, the Notch signals were also involved. Hence, the hsa_circRNA_102051/miR-203a/BPTF axis could be further explored as a therapeutic target for anti-metastatic therapy in CRC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA