Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109643, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763177

RESUMO

The lymphocystis disease (LCD), caused by Lymphocystis disease virus (LCDV), is a benign and self-limiting disease described in a many freshwater and marine fish species. Hypertrophic fibroblasts and extensive aggregation of inflammatory cells are characteristics of LCD. In the present study, small animal imaging and ultrastructural investigations were carried out on the lymphocystis nodules of black rockfish (Sebastes schlegelii) naturally infected with lymphocystis iridovirus, to assess pathology, and the exudate with particular attention to the formation of extracellular traps (ETs) in vivo. Ex vivo were examined by nodules sections and primary cells stimulation. By histopathological analysis, the nodules contained infiltrated inflammatory cells and extensive basophilic fibrillar filaments at the periphery of the hypertrophied fibroblasts. ETs were assessed in nodules samples using indirect immunofluorescence to detect DNA and myeloperoxidase. Moreover, LCDV was able to infect peritoneal cells of black rockfish in vitro and induce the formation of ETs within 4 h. In summary, this study proved that ETs are involved in the response to LCDV infection and may be involved in formation of lymphoid nodules. Taken together, the findings provide a new perspective to determine the impact factors on the growth of nodules.

2.
Mol Immunol ; 170: 26-34, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603988

RESUMO

Neutrophils represent an important asset of innate immunity. Neutrophils express myeloperoxidase (MPO) which is a heme-containing peroxidase involved in microbial killing. In this study, by using real-time quantitative PCR and Western blot analysis, the flounder MPO (PoMPO) was observed to be highly expressed in the head kidney, followed by spleen, gill, and intestine during ontogeny - during developmental stages from larvae to adults. Furthermore, PoMPO positive cells were present in major immune organs of flounder at all developmental stages, and the number of neutrophils was generally higher as the fish grew to a juvenile stage. In addition, flow cytometry analysis revealed that the proportion of PoMPO positive cells relative to leukocytes, in the peritoneal cavity, head kidney, and peripheral blood of flounder juvenile stage was 18.3 %, 34.8 %, and 6.0 %, respectively, which is similar to the adult stage in flounder as previously reported. The presence and tissue distribution of PoMPO during ontogeny suggests that PoMPO positive cells are indeed a player of the innate immunity at all developmental stages of flounder.


Assuntos
Linguado , Imunidade Inata , Neutrófilos , Peroxidase , Animais , Linguado/imunologia , Peroxidase/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Imunidade Inata/imunologia , Brânquias/imunologia , Rim Cefálico/imunologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Proteínas de Peixes/genética , Citometria de Fluxo , Baço/imunologia
3.
Fish Shellfish Immunol ; 148: 109482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458503

RESUMO

CD28 and CD80/86 are crucial co-stimulatory molecules for the T cell activation. Previous study illustrated that CD28 and CD80/86 present on T cells and antigen-presenting cells in flounder (Paralichthys olivaceus), respectively. The co-stimulatory molecules were closely associated with cell immunity. In this paper, recombinant protein of flounder CD80/86 (rCD80/86) and phytohemagglutinin (PHA) were added to peripheral blood leukocytes (PBLs) in vitro. Lymphocytes were significantly proliferated with CFSE staining, and the proportion of CD4+ and CD28+ lymphocytes significantly increased. In the meantime, genes related to the CD28-CD80/86 signaling pathway or T cell markers were significantly upregulated (p < 0.05). For further study, the interaction between CD80/86 and CD28 was confirmed. The plasmid of CD28 (pCD28-FLAG and pVN-CD28) or CD80/86 (pVC-CD80/86) was successfully constructed. In addition, pVN-ΔCD28 without the conserved motif "TFPPPF" was constructed. The results showed that bands of pCD28-FLAG bound to rCD80/86 were detected by both anti-FLAG and anti-CD80/86. pVN-CD28 complemented to pVC-CD80/86 showing positive fluorescent signals, and pVN-ΔCD28 failed to combine with pVC-CD80/86. The motif "TFPPPF" in CD28 played a crucial role in this linkage. These results indicate that CD28 and CD80/86 molecules interact with each other, and their binding may modulate T lymphocytes immune response in flounder. This study proved the existence of CD28-CD80/86 signaling pathway in flounder.


Assuntos
Antígenos CD28 , Linguado , Animais , Antígenos CD28/genética , Ativação Linfocitária , Antígeno B7-1/genética , Moléculas de Adesão Celular , Linfócitos T CD4-Positivos
4.
Fish Shellfish Immunol ; 148: 109502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471627

RESUMO

ß-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of ß-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-ßdefensin which express both the outer membrane protein of the bacterium and ß-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-ßdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-ßdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-ßdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-ßdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that ß-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Vacinas de DNA , beta-Defensinas , Animais , beta-Defensinas/genética , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Edwardsiella tarda , Vacinas Bacterianas , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
5.
J Immunol ; 212(7): 1196-1206, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380986

RESUMO

FcγR is a significant opsonin receptor located on the surface of immune cells, playing a crucial role in Ab-dependent cell-mediated immunity. Our previous work revealed opposite expression trends of FcγRII and FcγRIII in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda. This observation suggests that FcγRII and FcγRIII might serve distinct functions in Ig-opsonized immune responses. In this study, we prepared rFcγRIII as well as its corresponding Abs to investigate the potential roles of FcγRII and FcγRIII in the Ab-dependent immune response of IgM+ B cells. Our findings indicate that, unlike FcγRII, FcγRIII does not participate in Ab-dependent cellular phagocytosis. Instead, it is involved in cytokine production and bacterial killing in mIgM+ B lymphocytes. Additionally, we identified platelet-derived ADAM17 as a key factor in regulating FcγRIII shedding and cytokine release in mIgM+ B lymphocytes. These results elucidate the functions of FcγRII and FcγRIII in the innate immunology of mIgM+ B lymphocytes and contribute to an improved understanding of the regulatory roles of FcγRs in the phagocytosis of teleost B lymphocytes.


Assuntos
Linguado , Receptores de IgG , Animais , Receptores de IgG/genética , Receptores Fc , Sistema Imunitário , Citocinas
6.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323810

RESUMO

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Assuntos
Proteínas de Artrópodes , Hemócitos , Interações entre Hospedeiro e Microrganismos , Penaeidae , RNA-Seq , Análise da Expressão Gênica de Célula Única , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Penaeidae/citologia , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/imunologia
7.
J Virol Methods ; 326: 114892, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331220

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is an economically important virus causing significant mortalities among wild and cultured salmonid fish worldwide. Rapid and sensitive diagnostic methods of IHNV are crucial for timely controlling infections. For better detection of IHNV, we have established a detection technology based on the reverse transcription and recombinase polymerase amplification (RT-RPA) and CRISPR/Cas12a to detect the N gene of IHNV in two steps. Following the screening of primer pairs, the reaction temperature and time for RPA were optimized to be 41 °C and 35 min, respectively, and the CRISPR/Cas12a reaction was performed at 37 °C for 15 min. The whole detection procedure including can be accomplished within one hour, with a detection sensitivity of about 9.5 copies/µL. The detection method exhibited high specificity with no cross-reaction to the other Novirhabdoviruses HIRRV and VHSV, allowing naked-eye interpretation of the results through lateral flow or fluorescence under ultraviolet light. Overall, our results demonstrated that the developed RT-RPA-Cas12a-mediated assay is a rapid, specific and sensitive detection method for routine and on-site detection of IHNV, which shows a great application promise for the prevention of IHNV infections.


Assuntos
Vírus da Necrose Hematopoética Infecciosa , Animais , Vírus da Necrose Hematopoética Infecciosa/genética , Sistemas CRISPR-Cas , Transcrição Reversa , Recombinases/genética
8.
Biology (Basel) ; 12(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132290

RESUMO

The Major histocompatibility complex (Mhc) is an important molecule for antigen presenting and binds to T cell receptors, activating T lymphocytes and triggering specific immune responses. To investigate the role of MhcII in adaptive immunity, in this study, mhcIIα and mhcIIß of flounder (Paralichthys olivaceus) were cloned, polyclonal antibodies (Abs) against their extracellular regions were produced, respectively, and their distribution on cells and tissues and expression patterns, which varied by antigen stimulation or pathogen infection, were investigated. The results showed that the open reading frame (ORF) of mhcIIα is 708 bp, including 235 amino acids (aa); and the ORF of mhcIIß is 741 bp, encoding 246aa. The mhcIIα and mhcIIß were significantly expressed in gills, spleen, and peripheral blood leukocytes (PBLs). Their antibodies could specifically recognize eukaryotic expressed MhcIIα and MhcIIß. MhcIIα+ and MhcIIß+ cells were 30.2 ± 2.9% of the percentage in peripheral blood leukocytes. MhcII molecules were co-localized with CD83 and IgM on leukocytes, respectively, but not on CD4+ or CD8+ T lymphocyte subpopulations. The expression of both mhcIIα and mhcIIß were significantly upregulated in flounder after bacteria and virus challenges. The percentages of MhcII+ cells, MhcII+/CD83+, and MhcII+/IgM+ double-positive cells increased significantly after PHA and ConA stimulation, respectively; they varied significantly in PBLs after polyI:C stimulation, and no variations were found after LPS treatment. In the meantime, variations in MhcII+ cells were consistent with that of CD4+ T lymphocytes. These results suggest that MhcII, mainly expressed in B cells and dendritic cells, play an essential role in antigen presentation, and respond significantly to exogenous antigens and T cell-dependent antigens. These results may provide an important reference for the study of cellular immunity in teleosts.

9.
Front Immunol ; 14: 1268851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868974

RESUMO

Lymphocystis disease is frequently prevalent and transmissible in various teleost species worldwide due to lymphocystis disease virus (LCDV) infection, causing unsightly growths of benign lymphocystis nodules in fish and resulting in huge economic losses to aquaculture industry. However, the molecular mechanism of lymphocystis formation is unclear. In this study, LCDV was firstly detected in naturally infected flounder (Paralichthys olivaceus) by PCR, histopathological, and immunological techniques. To further understand lymphocystis formation, transcriptome sequencing of skin nodule tissue was performed by using healthy flounder skin as a control. In total, RNA-seq produced 99.36%-99.71% clean reads of raw reads, of which 91.11%-92.89% reads were successfully matched to the flounder genome. The transcriptome data showed good reproducibility between samples, with 3781 up-regulated and 2280 down-regulated differentially expressed genes. GSEA analysis revealed activation of Wnt signaling pathway, Hedgehog signaling pathway, Cell cycle, and Basal cell carcinoma associated with nodule formation. These pathways were analyzed to interact with multiple viral infection and tumor formation pathways. Heat map and protein interaction analysis revealed that these pathways regulated the expression of cell cycle-related genes such as ccnd1 and ccnd2 through key genes including ctnnb1, lef1, tcf3, gli2, and gli3 to promote cell proliferation. Additionally, cGMP-PKG signaling pathway, Calcium signaling pathway, ECM-receptor interaction, and Cytokine-cytokine receptor interaction associated with nodule formation were significantly down-regulated. Among these pathways, tnfsf12, tnfrsf1a, and tnfrsf19, associated with pro-apoptosis, and vdac2, which promotes viral replication by inhibiting apoptosis, were significantly up-regulated. Visual analysis revealed significant down-regulation of cytc, which expresses the pro-apoptotic protein cytochrome C, as well as phb and phb2, which have anti-tumor activity, however, casp3 was significantly up-regulated. Moreover, bcl9, bcl11a, and bcl-xl, which promote cell proliferation and inhibit apoptosis, were significantly upregulated, as were fgfr1, fgfr2, and fgfr3, which are related to tumor formation. Furthermore, RNA-seq data were validated by qRT-PCR, and LCDV copy numbers and expression patterns of focused genes in various tissues were also investigated. These results clarified the pathways and differentially expressed genes associated with lymphocystis nodule development caused by LCDV infection in flounder for the first time, providing a new breakthrough in molecular mechanisms of lymphocystis formation in fish.


Assuntos
Infecções por Vírus de DNA , Linguado , Iridoviridae , Animais , Linguado/genética , Proteínas Hedgehog , Reprodutibilidade dos Testes , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/metabolismo , Perfilação da Expressão Gênica , Iridoviridae/fisiologia
10.
Vaccines (Basel) ; 11(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37897005

RESUMO

Vibrio anguillarum (V. anguillarum) is a bacterium that seriously harms flounder and other aquaculture species. Vaccination is an effective means of preventing vibriosis and is mainly administered by intraperitoneal injection. Effective antigen processing at the initial stage of immunization is essential to elicit adaptive immune responses and improve vaccine efficacy. To understand the early immune response of flounder caused by inactivated V. anguillarum, we detected the transcriptome profiles of the cells in the peritoneal cavity (PoPerCs) after inactivated V. anguillarum immunization. More than 10 billion high-quality reads were obtained, of which about 89.33% were successfully mapped to the reference genome of flounder. A total of 1985, 3072, 4001, and 5476 differentially expressed genes were captured at 6, 12, 24, and 48 h post immunization, respectively. The hub module correlated with the immunization time was identified by WGCNA. GO and KEGG analysis showed that hub module genes were abundantly expressed in various immune-related aspects, including the response to stimuli, the immune system process, signal transducer activity, autophagy, the NOD-like receptor signaling pathway, the toll-like receptor signaling pathway, the T cell receptor signaling pathway, and Th17 cell differentiation. Additionally, genes related to Th cell differentiation are presented as heatmaps. These genes constitute a complex immune regulatory network, mainly involved in pathogen recognition, antigen processing and presentation, and Th cell differentiation. The results of this study provide the first transcriptome profile of PoPerCs associated with inactivated V. anguillarum immunity and lay a solid foundation for further studies on effective V. anguillarum vaccines.

11.
Int J Biol Macromol ; 253(Pt 8): 127590, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871716

RESUMO

Infections due to pathogens impact global aquaculture economy, where diseases caused by bacteria should be in particular focus due to antibiotic resistance. Hepcidin and NK-lysin are important innate immune factors having potential to be exploited as alternatives to antibiotics due to their antimicrobial activity and immunomodulatory capacity. In this study, the recombinant proteins of hepcidin 2 and NK-lysin (rPoHep2 and rPoNKL) from flounder (Paralichthys olivaceus) were obtained via a prokaryotic expression system. The results exhibited that rPoHep2 and rPoNKL killed both gram-negative and gram-positive bacteria mainly via attachment and disruption of the membrane. Interestingly, both peptides could bind to bacterial DNA. The antiviral assay showed that both peptides have antiviral activity against hirame nonvirhabdovirus. They exhibited no cytotoxicity to the mammalian and fish cell lines. PoHep2 was found localized in G-CSFR-positive peritoneal cells. Moreover, rPoHep2 significantly enhanced the phagocytosis of flounder leukocytes in vitro. These findings suggested that neutrophils contained rPoHep2 and may respond to the immunoreaction of neutrophils. In summary, both rPoHep2 and rPoNKL possess antimicrobial activities and may be exploited to replace traditional antibiotics. rPoHep2 possess immune regulatory functions, that can be further investigated as an immunostimulant in aquaculture.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Linguado , Animais , Linguado/genética , Hepcidinas/genética , Hepcidinas/farmacologia , Antivirais , Imunomodulação , Peptídeos , Antibacterianos , Proteínas de Peixes/genética , Mamíferos
12.
Fish Shellfish Immunol ; 141: 109083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722442

RESUMO

NOD-like receptors (NLRs) are one of the pattern recognition receptors which have been widely known for identifying pathogens and regulating innate immunity in mammals, but the functions of the NLR gene family in teleost fish remain poorly understood. In this study, we conducted a comprehensive identification and analysis of the flounder (Paralichthys olivaceus) NLR gene family, including bioinformatics information, evolutionary relationships, gene structures, conserved motifs, domain composition, expression patterns and protein-protein interaction (PPI). We identified 22 NLRs in flounder (flNLRs) which were clustered into three subfamilies according to their domain organizations and phylogenetic features, i.e., NLR-A (6 members) resembling mammalian NODs, NLR-B (1 member) resembling mammalian NLRPs, and NLR-C (15 members) unique to teleost fish. All flNLRs shared a conserved NACHT domain including an N-terminal nucleotide-binding domain, a middle helical domain 1, and a winged helix domain. Gene structure analysis displayed that flNLRs were significantly different, with exon numbers from 1 to 52. Conserved domain analysis showed that the N-terminus of flNLRs possessed different characteristics of the domains including CARD domain, PYRIN domain, RING domain, and fish-specific FISNA domain, and the C-terminus of seven NLR-C members contained an extra B30.2 domain, named NLRC-B30.2 group. Notably, flNLRs were expressed in all nine tested tissues, showing higher expressions in the systemic and mucosal immune tissues (e.g., kidney, spleen, hindgut, gills, skin, liver) in healthy flounder, and significant responses to intraperitoneal injection and immersion immunization of inactivated Vibrio anguillarum in mucosal tissues, especially the NLR-C members. In addition, PPI analysis demonstrated that some flNLRs of NLR-A and NLR-C shared the same interacting proteins such as RIPK2, TRAF6, MAVS, CASP, ASC, and ATG5, suggesting they might play crucial roles in host defense, antiviral innate immunity, inflammation, apoptosis and autophagy. This study for the first time characterized the NLR gene family of flounder at the genome-wide level, and the results provided a better understanding of the evolution of the NLR gene family and their immune functions in innate immunity in fish.

13.
Biology (Basel) ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627029

RESUMO

Hirame novirhabdovirus (HIRRV) is one of most serious viral pathogens causing significant economic losses to the flounder (Paralichthys olivaceus)-farming industry. Previous studies have shown that the outbreak of HIRRV is highly temperature-dependent, and revealed the viral replication was significantly affected by the antiviral response of flounders under different temperatures. In the present study, the proteome and phosphoproteome was used to analyze the different antiviral responses in the HIRRV-infected flounder under 10 °C and 20 °C. Post viral infection, 472 differentially expressed proteins (DEPs) were identified in the spleen of flounder under 10 °C, which related to NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, RNA transport and so on. Under 20 °C, 652 DEPs were identified and involved in focal adhesion, regulation of actin cytoskeleton, phagosome, NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway. Phosphoproteome analysis showed that 675 differentially expressed phosphoproteins (DEPPs) were identified in the viral infected spleen under 10 °C and significantly enriched in Spliceosome, signaling pathway, necroptosis and RNA transport. Under 20 °C, 1304 DEPPs were identified and significantly enriched to Proteasome, VEGF signaling pathway, apoptosis, Spliceosome, mTOR signaling pathway, mRNA surveillance pathway, and RNA transport. To be noted, the proteins and phosphoproteins involved in interferon production and signaling showed significant upregulations in the viral infected flounder under 20 °C compared with that under 10 °C. Furthermore, the temporal expression profiles of eight selected antiviral-related mRNA including IRF3, IRF7, IKKß, TBK1, IFIT1, IFI44, MX1 and ISG15 were detected by qRT-PCR, which showed a significantly stronger response at early infection under 20 °C. These results provided fundamental resources for subsequent in-depth research on the HIRRV infection mechanism and the antiviral immunity of flounder, and also gives evidences for the high mortality of HIRRV-infected flounder under low temperature.

14.
Int J Biol Macromol ; 242(Pt 1): 124567, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100320

RESUMO

The non-virion (NV) protein is the signature of genus Novirhabdovirus, which has been of considerable concern due to its potential role in viral pathogenicity. However, its expression characteristics and induced immune response remain limited. In the present work, it was demonstrated that Hirame novirhabdovirus (HIRRV) NV protein was only detected in the viral infected hirame natural embryo (HINAE) cells, but absent in the purified virions. Results showed that the transcription of NV gene could be stably detected in HIRRV-infected HINAE cells at 12 h post infection (hpi) and then reached the peak at 72 hpi. A similar expression trend of NV gene was also found in HIRRV-infected flounders. Subcellular localization analysis further exhibited that HIRRV-NV protein was predominantly localized in the cytoplasm. To elucidate the biological function of HIRRV-NV protein, NV eukaryotic plasmid was transfected into HINAE cells for RNA-seq. Compared to empty plasmid group, some key genes in RLR signaling pathway were significantly downregulated in NV-overexpressed HINAE cells, indicating that RLR signaling pathway was inhibited by HIRRV-NV protein. The interferon-associated genes were also significantly suppressed upon transfection of NV gene. This research would improve our understanding of expression characteristics and biological function of NV protein during HIRRV infection process.


Assuntos
Doenças dos Peixes , Linguado , Novirhabdovirus , Infecções por Rhabdoviridae , Proteínas Virais , Transfecção , Novirhabdovirus/genética , Novirhabdovirus/imunologia , Novirhabdovirus/patogenicidade , Linguado/imunologia , Linguado/virologia , Animais , Embrião não Mamífero , Proteínas Virais/genética , Proteínas Virais/imunologia , Imunidade Ativa , Células Cultivadas , Vetores Genéticos , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Regulação da Expressão Gênica/imunologia
15.
Vaccines (Basel) ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36992208

RESUMO

Streptococcus iniae is a severe Gram-positive pathogen that can infect a wide range of freshwater and marine fish species. In continuation of our earlier studies on the development of S. iniae vaccine candidates, pyruvate dehydrogenase E1 subunit alpha (PDHA1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were highly efficacious in protecting flounder (Paralichthys olivaceus) against S. iniae. In the present study, to investigate the potential of multi-epitope vaccination strategy to prevent flounder against S. iniae infection, the liner B-cell epitopes of PDHA1 and GAPDH proteins were predicted using a bioinformatics approach and were identified by immunoassay, and recombinant B-cell multi-epitopes of PDHA1 and GAPDH (rMEPIP and rMEPIG) containing immunodominant epitope-concentrated domains were expressed in Escherichia coli BL21 (DE3) and were used as a subunit vaccine to immunize healthy flounder, while recombinant PDHA1 (rPDHA1), GAPDH (rGAPDH) and formalin-inactivated S. iniae (FKC) served as controls. Then, the immunoprotection efficacy of rMEPIP and rMEPIG was evaluated by determining the percentages of CD4-1+, CD4-2+, CD8ß+ T lymphocytes and surface-IgM-positive (sIgM+) lymphocytes in peripheral blood leucocytes (PBLs), spleen leucocytes (SPLs) and head kidney leucocytes (HKLs), as well as total IgM, specific IgM, and relative percentage survival (RPS) post immunization, respectively. It was found that fish immunized with rPDHA1, rGAPDH, rMEPIP, rMEPIG and FKC showed significant increases in sIgM+, CD4-1+, CD4-2+, and CD8ß+ lymphocytes and production of total IgM and specific IgM against S. iniae or recombinant proteins rPDHA1 and rGAPDH, which indicated the activation of humoral and cellular immune responses after vaccination. Moreover, RPS rate of the multi-epitope vaccine rMEPIP and rMEPIG groups reached 74.07% and 77.78%, higher than that of rPDHA1 and rGAPDH (62.96% and 66.67%) and KFC (48.15%). These results demonstrated that B-cell multi-epitope protein vaccination, rMEPIP and rMEPIG, could give a better protective effect against S. iniae infection, which provided a promising strategy to design the efficient vaccine in teleost fish.

16.
Front Immunol ; 14: 1124813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776890

RESUMO

Myeloperoxidase (MPO) is a cationic leukocyte haloperoxidase and together with other proteins, they possess activities against various microorganisms and are involved in extracellular trap (ET) formation. The present work describes the gene and deduced protein sequences, and functions of MPO in flounder (PoMPO). The PoMPO possesses a 2313 bp open reading frame (ORF) that encodes a protein of 770 amino acids. The highest PoMPO mRNA expression levels were found in the head kidney, followed by peritoneal cells, gill, spleen, skin, muscle, and liver. PoMPO was expressed in MHCII+ and GCSFR+ cells which indicated that PoMPO mainly is expressed in flounder macrophages and granulocytes. Bacterial lipopolysaccharide-stimulated peritoneal leukocytes showed an increased protein level of PoMPO while it seemed that LPS also promoted the migration of MPO+ cells from the head kidney into the peripheral blood and peritoneal cavity. After phorbol 12-myristate 13-acetate (PMA) or bacterial stimulation, flounder leukocytes produced typical ET structures containing DNA with decoration by MPO. The ETs containing DNA and PoMPO effectively inhibited the proliferation of ET-trapped bacteria. Blocking PoMPO with antibodies decreased the enzymatic activity, which attenuated the antibacterial activity of ETs. This study pinpoints the involvement of ETs in flounder innate responses to pathogens.


Assuntos
Anti-Infecciosos , Armadilhas Extracelulares , Linguado , Animais , Linguado/genética , Peroxidase/genética , Alinhamento de Sequência , Regulação da Expressão Gênica
17.
Fish Shellfish Immunol ; 134: 108636, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36828199

RESUMO

Interferon gamma (IFN-γ), the member of type II interferons, is a major driver and effector cytokine for Th1 cells and plays broad roles in regulating the function of immune cells. Teleost fish represents the oldest living bony vertebrates containing T-lymphocyte subsets. However, whether or how the regulatory mechanisms of IFN-γ on Th1 cells occur in teleost fish remain unknown. In this study, full-length transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and signaling pathways in the IFN-γ stimulated lymphocytes of flounder (Paralichthys olivaceus), the data showed 811 genes were upregulated and 1107 genes were downregulated, Th1 and Th2 cell differentiation pathway was remarkably enriched from DEGs, and the genes in the Th1 cell differentiation pathway were upregulated and verified. Accordingly, variations on Th1 cell differentiation marker genes and CD4+ cells were investigated after IFN-γ stimulation, the results confirmed that CD4+ T lymphocytes proliferated significantly after IFN-γ stimulation, accompanied by eight genes significant upregulation and increased T-bet expression in lymphocytes. In conclusion, the results revealed an induction of IFN-γ on Th1-type immune response, providing novel perspectives into the differentiation of CD4+ T lymphocytes in teleost.


Assuntos
Linguado , Interferon gama , Animais , Interferon gama/genética , Transcriptoma , Linfócitos T CD4-Positivos , Células Th1 , Imunidade
18.
J Virol ; 97(1): e0174822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633407

RESUMO

Nervous necrosis virus (NNV), a formidable pathogen in marine and freshwater fish, has inflicted enormous financial tolls on the aquaculture industry worldwide. Although capsid protein (CP) is the sole structural protein with pathogenicity and antigenicity, public information on immunodominant regions remains extremely scarce. Here, we employed neutralizing monoclonal antibodies (MAbs) specific for red-spotted grouper NNV (RGNNV) CNPgg2018 in combination with partially overlapping truncated proteins and peptides to identify two minimal B-cell epitope clusters on CP, 122GYVAGFL128 and 227SLYNDSL233. Site-directed mutational analysis confirmed residues Y123, G126, and L128 and residues L228, Y229, N230, D231, and L233 as the critical residues responsible for the direct interaction with ligand, respectively. According to homologous modeling and bioinformatic evaluation, 122GYVAGFL128 is harbored at the groove of the CP junction with strict conservation among all NNV isolates, while 227SLYNDSL233 is localized in proximity to the tip of a viral protrusion having relatively high evolutionary dynamics in different genotypes. Additionally, 227SLYNDSL233 was shown to be a receptor-binding site, since the corresponding polypeptide could moderately suppress RGNNV multiplication by impeding virion entry. In contrast, 122GYVAGFL128 seemed dedicated only to stabilizing viral native conformation and not to assisting initial virus attachment. Altogether, these findings contribute to a novel understanding of the antigenic distribution pattern of NNV and the molecular basis for neutralization, thus advancing the development of biomedical products, especially epitope-based vaccines, against NNV. IMPORTANCE NNV is a common etiological agent associated with neurological virosis in multiple aquatic organisms, causing significant hazards to the host. However, licensed drugs or vaccines to combat NNV infection are very limited to date. Toward the advancement of broad-spectrum prophylaxis and therapeutics against NNV, elucidating the diversity of immunodominant regions within it is undoubtedly essential. Here, we identified two independent B-cell epitopes on NNV CP, followed by the confirmation of critical amino acid residues participating in direct interaction. These two sites were distributed on the shell and protrusion domains of the virion, respectively, and mediated the neutralization exerted by MAbs via drastically distinct mechanisms. Our work promotes new insights into NNV antigenicity as well as neutralization and, more importantly, offers promising targets for the development of antiviral countermeasures.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Animais , Bass/virologia , Proteínas do Capsídeo/metabolismo , Epitopos de Linfócito B/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Epitopos Imunodominantes , Necrose , Nodaviridae/fisiologia , Infecções por Vírus de RNA/imunologia
19.
Dev Comp Immunol ; 141: 104627, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587713

RESUMO

Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-ß and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.


Assuntos
Citocinas , Subpopulações de Linfócitos T , Animais , Citocinas/metabolismo , Linfócitos T Reguladores , Diferenciação Celular , Peixes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Th17 , Mamíferos
20.
Fish Shellfish Immunol ; 133: 108570, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36717064

RESUMO

MMP-9 belongs to the Matrix Metalloprotease family, which is mainly involved in the protein hydrolysis process of extracellular matrix and plays important roles in many biological processes, such as embryogenesis, tissue remodeling, angiogenesis, inflammatory processes and wound healing. In this study, we described the sequence characteristics of the MMP-9 gene in flounder (PoMMP-9). PoMMP-9 was highly homologous to MMP-9 from turbot, medaka, and Fugu rubripes. The mRNA of PoMMP-9 was constitutively expressed in all tested tissues of healthy flounder with the highest expression levels in the head kidney and spleen. A time-dependent expression pattern of PoMMP-9 in the head kidney and spleen was found after the bacterial and virus challenge. This indicates that PoMMP-9 is inducible and involved in immune responses. Indirect immunofluorescence assay showed that the PoMMP-9 was co-localization in the extracellular traps (ETs) released by the leukocytes. After overexpression, PoMMP-9 can recruit more inflammatory cells and play a broad immune process from pathogen elimination to wound healing at the inflammatory site through ETs. In summary, this study provided new insights into the biological function of MMP-9 in teleost.


Assuntos
Armadilhas Extracelulares , Linguado , Metaloproteinase 9 da Matriz , Animais , Edwardsiella tarda/fisiologia , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Imunidade Inata/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA