Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(32): 35100-35112, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157140

RESUMO

Identifying the associations between long noncoding RNAs (lncRNAs) and disease is critical for disease prevention, diagnosis and treatment. However, conducting wet experiments to discover these associations is time-consuming and costly. Therefore, computational modeling for predicting lncRNA-disease associations (LDAs) has become an important alternative. To enhance the accuracy of LDAs prediction and alleviate the issue of node feature oversmoothing when exploring the potential features of nodes using graph neural networks, we introduce DPFELDA, a dual-path feature extraction network that leverages the integration of information from multiple sources to predict LDA. Initially, we establish a dual-view structure of lncRNAs and disease and a heterogeneous network of lncRNA-disease-microRNA (miRNA) interactions. Subsequently, features are extracted using a dual-path feature extraction network. In particular, we employ a combination of a graph convolutional network, a convolutional block attention module, and a node aggregation layer to perform multilayer topology feature extraction for the dual-view structure of lncRNAs and diseases. Additionally, we utilize a Transformer model to construct the node topology feature residual network for obtaining node-specific features in heterogeneous networks. Finally, XGBoost is employed for LDA prediction. The experimental results demonstrate that DPFELDA outperforms the benchmark model on various benchmark data sets. In the course of model exploration, it becomes evident that DPFELDA successfully alleviates the issue of node feature oversmoothing induced by graph-based learning. Ablation experiments confirm the effectiveness of the innovative module, and a case study substantiates the accuracy of DPFELDA model in predicting novel LDAs for characteristic diseases.

2.
BMC Bioinformatics ; 25(1): 46, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287236

RESUMO

BACKGROUND: Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes. METHODS: We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results. RESULTS: We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively. CONCLUSION: We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , Biologia Computacional/métodos , MicroRNAs/genética , Algoritmos
3.
BMC Bioinformatics ; 25(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166659

RESUMO

BACKGROUND: A growing body of researches indicate that the disrupted expression of long non-coding RNA (lncRNA) is linked to a range of human disorders. Therefore, the effective prediction of lncRNA-disease association (LDA) can not only suggest solutions to diagnose a condition but also save significant time and labor costs. METHOD: In this work, we proposed a novel LDA predicting algorithm based on graph convolutional network and transformer, named GCNFORMER. Firstly, we integrated the intraclass similarity and interclass connections between miRNAs, lncRNAs and diseases, and built a graph adjacency matrix. Secondly, to completely obtain the features between various nodes, we employed a graph convolutional network for feature extraction. Finally, to obtain the global dependencies between inputs and outputs, we used a transformer encoder with a multiheaded attention mechanism to forecast lncRNA-disease associations. RESULTS: The results of fivefold cross-validation experiment on the public dataset revealed that the AUC and AUPR of GCNFORMER achieved 0.9739 and 0.9812, respectively. We compared GCNFORMER with six advanced LDA prediction models, and the results indicated its superiority over the other six models. Furthermore, GCNFORMER's effectiveness in predicting potential LDAs is underscored by case studies on breast cancer, colon cancer and lung cancer. CONCLUSIONS: The combination of graph convolutional network and transformer can effectively improve the performance of LDA prediction model and promote the in-depth development of this research filed.


Assuntos
Neoplasias da Mama , Neoplasias do Colo , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Algoritmos , Neoplasias da Mama/genética , Biologia Computacional/métodos
4.
Cell Signal ; 106: 110633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36803774

RESUMO

Breast cancer (BC) is one of the most common malignancies occurring in women worldwide, and its incidence is increasing each year. Accumulating evidence indicated that Myosin VI (MYO6) functions as a gene associated with tumor progression in several cancers. However, the potential role of MYO6 and its underlying mechanisms in the development and progression of BC remains unknown. Herein, we examined the expression levels of MYO6 in BC cells and tissues by western blot and immunohistochemistry. Loss- and gain-of-function investigations in vitro were performed to determine the biological functions of MYO6. And in vivo effects of MYO6 on tumorigenesis were investigated in nude mice. Our findings showed that the expression of MYO6 was up-regulated in breast cancer, and its high expression was correlated with poor prognosis. Further investigation exhibited that silencing the expression of MYO6 significantly inhibited cell proliferation, migration and invasion, whereas overexpression of MYO6 enhanced these abilities in vitro. Also, reduced expression of MYO6 significantly retarded the tumor growth in vivo. Mechanistically, Gene Set Enrichment Analysis (GSEA) revealed that MYO6 was involved in mitogen-activated protein kinase (MAPK) pathway. Moreover, we proved that MYO6 enhanced BC proliferation, migration and invasion via increasing the expression of phosphorylated ERK1/2. Taken together, our findings highlight the role of MYO6 in promoting BC cell progression through MAPK/ERK pathway, suggesting it may be a new potential therapeutic and prognostic target for BC patients.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/genética , Transdução de Sinais
5.
Front Genet ; 14: 1332273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264213

RESUMO

Increasing evidence indicates that mutations and dysregulation of long non-coding RNA (lncRNA) play a crucial role in the pathogenesis and prognosis of complex human diseases. Computational methods for predicting the association between lncRNAs and diseases have gained increasing attention. However, these methods face two key challenges: obtaining reliable negative samples and incorporating lncRNA-disease association (LDA) information from multiple perspectives. This paper proposes a method called NDMLDA, which combines multi-view feature extraction, unsupervised negative sample denoising, and stacking ensemble classifier. Firstly, an unsupervised method (K-means) is used to design a negative sample denoising module to alleviate the imbalance of samples and the impact of potential noise in the negative samples on model performance. Secondly, graph attention networks are employed to extract multi-view features of both lncRNAs and diseases, thereby enhancing the learning of association information between them. Finally, lncRNA-disease association prediction is implemented through a stacking ensemble classifier. Existing research datasets are integrated to evaluate performance, and 5-fold cross-validation is conducted on this dataset. Experimental results demonstrate that NDMLDA achieves an AUC of 0.9907and an AUPR of 0.9927, with a 5-fold cross-validation variance of less than 0.1%. These results outperform the baseline methods. Additionally, case studies further illustrate the model's potential in cancer diagnosis and precision medicine implementation.

6.
Front Genet ; 13: 995532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092871

RESUMO

More and more evidences have showed that the unnatural expression of long non-coding RNA (lncRNA) is relevant to varieties of human diseases. Therefore, accurate identification of disease-related lncRNAs can help to understand lncRNA expression at the molecular level and to explore more effective treatments for diseases. Plenty of lncRNA-disease association prediction models have been raised but it is still a challenge to recognize unknown lncRNA-disease associations. In this work, we have proposed a computational model for predicting lncRNA-disease associations based on geometric complement heterogeneous information and random forest. Firstly, geometric complement heterogeneous information was used to integrate lncRNA-miRNA interactions and miRNA-disease associations verified by experiments. Secondly, lncRNA and disease features consisted of their respective similarity coefficients were fused into input feature space. Thirdly, an autoencoder was adopted to project raw high-dimensional features into low-dimension space to learn representation for lncRNAs and diseases. Finally, the low-dimensional lncRNA and disease features were fused into input feature space to train a random forest classifier for lncRNA-disease association prediction. Under five-fold cross-validation, the AUC (area under the receiver operating characteristic curve) is 0.9897 and the AUPR (area under the precision-recall curve) is 0.7040, indicating that the performance of our model is better than several state-of-the-art lncRNA-disease association prediction models. In addition, case studies on colon and stomach cancer indicate that our model has a good ability to predict disease-related lncRNAs.

7.
Front Genet ; 13: 995535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176298

RESUMO

More and more studies have proved that microRNAs (miRNAs) play a critical role in gene expression regulation, and the irregular expression of miRNAs tends to be associated with a variety of complex human diseases. Because of the high cost and low efficiency of identifying disease-associated miRNAs through biological experiments, scholars have focused on predicting potential disease-associated miRNAs by computational methods. Considering that the existing methods are flawed in constructing negative sample set, we proposed a clustering-based sampling method for miRNA-disease association prediction (CSMDA). Firstly, we integrated multiple similarity information of miRNA and disease to represent miRNA-disease pairs. Secondly, we performed a clustering-based sampling method to avoid introducing potential positive samples when constructing negative sample set. Thirdly, we employed a random forest-based feature selection method to reduce noise and redundant information in the high-dimensional feature space. Finally, we implemented an ensemble learning framework for predicting miRNA-disease associations by soft voting. The Precision, Recall, F1-score, AUROC and AUPR of the CSMDA achieved 0.9676, 0.9545, 0.9610, 0.9928, and 0.9940, respectively, under five-fold cross-validation. Besides, case study on three cancers showed that the top 20 potentially associated miRNAs predicted by the CSMDA were confirmed by the dbDEMC database or literatures. The above results demonstrate that the CSMDA can predict potential disease-associated miRNAs more accurately.

8.
J Hum Genet ; 65(11): 927-938, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32690864

RESUMO

The metabolic syndrome (MS) is a cluster of interrelated risk factors including diabetes mellitus, abdominal obesity, high cholesterol, and hypertension, which can significantly increase mortality and disability. Accumulating evidence suggest that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of human metabolic diseases. However, little is known about the regulatory role of lncRNAs in MS. In this work, we proposed a method for identifying potential MS-associated lncRNAs by constructing an lncRNA-miRNA-mRNA network (LMMN). Firstly, we constructed LMMN by integrating MS-associated genes, miRNA-mRNA interactions, miRNA-lncRNA interactions and mRNA/miRNA expression profiles in patients with MS. Then, we predicted potential MS-associated lncRNAs based on the topological properties of LMMN. As a result, we identified XIST as the most important lncRNA in LMMN. Furthermore, we focused on XIST/miR-214-3p and mir-181a-5p/PTEN axis and validated their expression in MS using real-time quantitative polymerase chain reaction (RT-qPCR). The RT-qPCR results showed that the expression of XIST and PTEN was significantly decreased (P < 0.05) while the expression of miR-214-3p was significantly increased (P < 0.05) in peripheral blood mononuclear cells (PBMCs) of patients with MS, compared with healthy controls. In addition, correlation analysis showed that XIST was negatively correlated with serum C peptide and PTEN was positively correlated with BMI of MS patients. Our findings provided new evidence for further exploring the regulatory role of XIST and other lncRNAs in MS.


Assuntos
Biomarcadores/análise , Redes Reguladoras de Genes , Síndrome Metabólica/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
9.
BMC Bioinformatics ; 21(1): 126, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216744

RESUMO

BACKGROUND: Accumulated evidence shows that the abnormal regulation of long non-coding RNA (lncRNA) is associated with various human diseases. Accurately identifying disease-associated lncRNAs is helpful to study the mechanism of lncRNAs in diseases and explore new therapies of diseases. Many lncRNA-disease association (LDA) prediction models have been implemented by integrating multiple kinds of data resources. However, most of the existing models ignore the interference of noisy and redundancy information among these data resources. RESULTS: To improve the ability of LDA prediction models, we implemented a random forest and feature selection based LDA prediction model (RFLDA in short). First, the RFLDA integrates the experiment-supported miRNA-disease associations (MDAs) and LDAs, the disease semantic similarity (DSS), the lncRNA functional similarity (LFS) and the lncRNA-miRNA interactions (LMI) as input features. Then, the RFLDA chooses the most useful features to train prediction model by feature selection based on the random forest variable importance score that takes into account not only the effect of individual feature on prediction results but also the joint effects of multiple features on prediction results. Finally, a random forest regression model is trained to score potential lncRNA-disease associations. In terms of the area under the receiver operating characteristic curve (AUC) of 0.976 and the area under the precision-recall curve (AUPR) of 0.779 under 5-fold cross-validation, the performance of the RFLDA is better than several state-of-the-art LDA prediction models. Moreover, case studies on three cancers demonstrate that 43 of the 45 lncRNAs predicted by the RFLDA are validated by experimental data, and the other two predicted lncRNAs are supported by other LDA prediction models. CONCLUSIONS: Cross-validation and case studies indicate that the RFLDA has excellent ability to identify potential disease-associated lncRNAs.


Assuntos
Algoritmos , Doença/genética , RNA Longo não Codificante/metabolismo , Área Sob a Curva , Biologia Computacional/métodos , Simulação por Computador , Humanos , MicroRNAs/metabolismo , Neoplasias/genética , Curva ROC , Análise de Regressão , Fatores de Risco
10.
BMC Bioinformatics ; 20(1): 624, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795954

RESUMO

BACKGROUND: A large body of evidence shows that miRNA regulates the expression of its target genes at post-transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately discovering disease-related miRNAs is conductive to the exploring of the pathogenesis and treatment of diseases. However, because of the limitation of time-consuming and expensive experimental methods, predicting miRNA-disease associations by computational models has become a more economical and effective mean. RESULTS: Inspired by the work of predecessors, we proposed an improved computational model based on random forest (RF) for identifying miRNA-disease associations (IRFMDA). First, the integrated similarity of diseases and the integrated similarity of miRNAs were calculated by combining the semantic similarity and Gaussian interaction profile kernel (GIPK) similarity of diseases, the functional similarity and GIPK similarity of miRNAs, respectively. Then, the integrated similarity of diseases and the integrated similarity of miRNAs were combined to represent each miRNA-disease relationship pair. Next, the miRNA-disease relationship pairs contained in the HMDD (v2.0) database were considered positive samples, and the randomly constructed miRNA-disease relationship pairs not included in HMDD (v2.0) were considered negative samples. Next, the feature selection based on the variable importance score of RF was performed to choose more useful features to represent samples to optimize the model's ability of inferring miRNA-disease associations. Finally, a RF regression model was trained on reduced sample space to score the unknown miRNA-disease associations. The AUCs of IRFMDA under local leave-one-out cross-validation (LOOCV), global LOOCV and 5-fold cross-validation achieved 0.8728, 0.9398 and 0.9363, which were better than several excellent models for predicting miRNA-disease associations. Moreover, case studies on oesophageal cancer, lymphoma and lung cancer showed that 94 (oesophageal cancer), 98 (lymphoma) and 100 (lung cancer) of the top 100 disease-associated miRNAs predicted by IRFMDA were supported by the experimental data in the dbDEMC (v2.0) database. CONCLUSIONS: Cross-validation and case studies demonstrated that IRFMDA is an excellent miRNA-disease association prediction model, and can provide guidance and help for experimental studies on the regulatory mechanism of miRNAs in complex human diseases in the future.


Assuntos
Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Estudos de Associação Genética , Predisposição Genética para Doença , MicroRNAs/genética , Área Sob a Curva , Humanos , MicroRNAs/metabolismo , Neoplasias/genética , Fatores de Risco
11.
PeerJ ; 7: e7909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637139

RESUMO

Metabolic syndrome is a cluster of the most dangerous heart attack risk factors (diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure), and has become a major global threat to human health. A number of studies have demonstrated that hundreds of non-coding RNAs, including miRNAs and lncRNAs, are involved in metabolic syndrome-related diseases such as obesity, type 2 diabetes mellitus, hypertension, etc. However, these research results are distributed in a large number of literature, which is not conducive to analysis and use. There is an urgent need to integrate these relationship data between metabolic syndrome and non-coding RNA into a specialized database. To address this need, we developed a metabolic syndrome-associated non-coding RNA database (ncRNA2MetS) to curate the associations between metabolic syndrome and non-coding RNA. Currently, ncRNA2MetS contains 1,068 associations between five metabolic syndrome traits and 627 non-coding RNAs (543 miRNAs and 84 lncRNAs) in four species. Each record in ncRNA2MetS database represents a pair of disease-miRNA (lncRNA) association consisting of non-coding RNA category, miRNA (lncRNA) name, name of metabolic syndrome trait, expressive patterns of non-coding RNA, method for validation, specie involved, a brief introduction to the association, the article referenced, etc. We also developed a user-friendly website so that users can easily access and download all data. In short, ncRNA2MetS is a complete and high-quality data resource for exploring the role of non-coding RNA in the pathogenesis of metabolic syndrome and seeking new treatment options. The website is freely available at http://www.biomed-bigdata.com:50020/index.html.

12.
Int J Data Min Bioinform ; 13(1): 84-101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529910

RESUMO

High-dimensional data and a large number of redundancy features in bioinformatics research have created an urgent need for feature selection. In this paper, a novel random forests-based feature selection method is proposed that adopts the idea of stratifying feature space and combines generalised sequence backward searching and generalised sequence forward searching strategies. A random forest variable importance score is used to rank features, and different classifiers are used as a feature subset evaluating function. The proposed method is examined on five microarray expression datasets, including leukaemia, prostate, breast, nervous and DLBCL, and the average accuracies of the SVM classifier in these datasets are 100%, 95.24%, 85%, 91.67%, and 91.67%, respectively. The results show that the proposed method could not only improve the classification accuracy but also greatly reduce the computation time of the feature selection process.


Assuntos
Biomarcadores Tumorais , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Leucemia , Análise de Sequência com Séries de Oligonucleotídeos , Máquina de Vetores de Suporte , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia/genética , Leucemia/metabolismo
13.
World J Gastroenterol ; 18(6): 570-5, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22363125

RESUMO

AIM: To screen the differential expressed genes in colorectal cancer and polyp tissue samples. METHODS: Tissue specimens containing 16 cases of colorectal adenocarcinoma and colorectal polyp vs normal mucosae were collected and subjected to cDNA microarray and bioinformatical analyses. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to confirm some of the cDNA microarray data. RESULTS: The experimental data showed that eight genes were differentially expressed, most of which were upregulated in adenomatous polyp lesions. Forty-six genes expressions were altered in colorectal cancers, of which 29 were upregulated and 17 downregulated, as compared to the normal mucosae. In addition, 18 genes were similarly altered in both adenomatous polyps and colorectal cancer. qRT-PCR analyses confirmed the cDNA microarray data for four of those 18 genes: MTA1, PDCD4, TSC1 and PDGFRA. CONCLUSION: These differentially expressed genes likely represent biomarkers for early detection of colorectal cancer and may be potential therapeutic targets after confirmed by further studies.


Assuntos
Pólipos do Colo/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Pólipos Adenomatosos/genética , Pólipos Adenomatosos/patologia , Adulto , Idoso , Biomarcadores , Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Adulto Jovem
14.
World J Gastroenterol ; 14(38): 5857-67, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18855985

RESUMO

AIM: To study the role of mitochondrial energy disorder in the pathogenesis of ethanol-induced gastric mucosa injury. METHODS: Wistar rats were used in this study. A gastric mucosal injury model was established by giving the rats alcohol. Gross and microscopic appearance of gastric mucosa and ultrastructure of mitochondria were evaluated. Malondiadehyde (MDA) in gastric mucosa was measured with thiobarbituric acid. Expression of ATP synthase (ATPase) subunits 6 and 8 in mitochondrial DNA (mtDNA) was determined by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The gastric mucosal lesion index was correlated with the MDA content in gastric mucosa. As the concentration of ethanol was elevated and the exposure time to ethanol was extended, the content of MDA in gastric mucosa increased and the extent of damage aggravated. The ultrastructure of mitochondria was positively related to the ethanol concentration and exposure time. The expression of mtDNA ATPase subunits 6 and 8 mRNA declined with the increasing MDA content in gastric mucosa after gavage with ethanol. CONCLUSION: Ethanol-induced gastric mucosa injury is related to oxidative stress, which disturbs energy metabolism of mitochondria and plays a critical role in the pathogenesis of ethanol-induced gastric mucosa injury.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , DNA Mitocondrial/metabolismo , Relação Dose-Resposta a Droga , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Masculino , Malondialdeído/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Animais , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA