Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 378: 129006, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011848

RESUMO

Bamboo and its mechanical processing residues have broad prospects for high value-added utilization. In this research, p-toluenesulfonic acid was used for the pretreatment of bamboo to investigate the effects of extraction and depolymerization of hemicellulose. The response and behavior of changes of cell-wall chemical components were investigated after different solvent concentration, time, and temperature pretreatment. Results indicated that the maximum extraction yield of hemicellulose was 95.16 % with 5 % p-toluenesulfonic acid at 140 °C for 30 min. The depolymerized components of hemicellulose in the filtrate were mainly xylose and xylooligosaccharide, with xylobiose accounting for 30.77 %. The extraction of xylose from the filtrate reached a maximum of 90.16 % with 5 % p-toluenesulfonic acid at 150 °C for 30 min pretreatment. This research provided a potential strategy for the industrial production of xylose and xylooligosaccharide from bamboo and for the future conversion and utilization.


Assuntos
Polissacarídeos , Xilose , Poaceae , Ácidos
2.
RSC Adv ; 12(26): 16942-16954, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754883

RESUMO

In this study, the effect of the γ-valerolactone (GVL)/H2O pretreatment system on bamboo (Neosinocalamus affinis) for enzymatic hydrolysis and ethanol fermentation was investigated. The performance characterization of the pretreated bamboo substrates, including the chemical composition, the structural characteristics, and the ability to produce bioethanol, were evaluated. The recovered substrates were enzymatically hydrolyzed for 48 h and then fermented to bioethanol. For the cellulose in the raw bamboo material, the highest cellulose-to-glucose conversion yield (CGCY) was achieved at 140 °C for 2 h with GVL : H2O = 8 : 2, which was 73.39%, and the cellulose-to-ethanol conversion yield (CECY) was 67.00%. This indicated that 183.5 kg of bioethanol could be produced per ton of bamboo, which was 9.71-folds higher than that directly converted from the untreated raw bamboo powder. Under these conditions, 50.60% of the active lignin can be recovered and be used as a wood-derived feedstock for further high-valued utilization. Meanwhile, the maximum concentration of fermentation inhibitors formed after pretreatment was about 140.9 mmol L-1, and had weak inhibition to the subsequent reaction. It has been shown that the cellulose could be effectively separated from bamboo and converted into bioethanol through the GVL/H2O pretreatment system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA