Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(4): 527-534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454027

RESUMO

The liquid-like feature of thermoelectric superionic conductors is a double-edged sword: the long-range migration of ions hinders the phonon transport, but their directional segregation greatly impairs the service stability. We report the synergetic enhancement in figure of merit (ZT) and stability in Cu1.99Se-based superionic conductors enabled by ion confinement effects. Guided by density functional theory and nudged elastic band simulations, we elevated the activation energy to restrict ion migrations through a cation-anion co-doping strategy. We reduced the carrier concentration without sacrificing the low thermal conductivity, obtaining a ZT of ∼3.0 at 1,050 K. Notably, the fabricated device module maintained a high conversion efficiency of up to ∼13.4% for a temperature difference of 518 K without obvious degradation after 120 cycles. Our work could be generalized to develop electrically and thermally robust functional materials with ionic migration characteristics.

2.
ACS Appl Mater Interfaces ; 15(38): 45128-45136, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37708382

RESUMO

The demand for miniaturization and integration in next-generation advanced high-/pulsed-power devices has resulted in a strong desire for dielectric capacitors with high energy storage capabilities. However, practical applications of dielectric capacitors have been hindered by the challenge of poor energy-storage density (Urec) and efficiency (η) caused by large remanent polarization (Pr) and low breakdown strength (BDS). Herein, we take a method of heterovalent ion substitution engineering in combination with the multilayer capacitor (MLCC) technology and thus achieve a large maximum polarization (Pmax), zero Pr, and high BDS in the AgNbO3 (AN) system simultaneously and obtain excellent Urec and η. The substitution of Sm3+ for Ag+ in SmxAN+Mn MLCCs at x ≥ 0.01 decreases the M1-M2 phase transition temperature, and the antiferroelectric (AFE) M2 phase appears at room temperature, which is beneficial to achieving a low Pr value. Due to the low Pr value and high BDS ∼ 1300 kV·cm-1, an excellent Urec ∼9.8 J·cm-3 and PD,max ∼ 34.8 MW·cm-3 were achieved in SmxAN+Mn MLCCs at x = 0.03. The work suggests a paradigm that can enhance the energy storage capabilities of AFE MLCCs to meet the demanding requirements of advanced energy storage applications.

3.
Nat Commun ; 14(1): 1166, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859413

RESUMO

Dielectric capacitors with high energy storage performance are highly desired for next-generation advanced high/pulsed power capacitors that demand miniaturization and integration. However, the poor energy-storage density that results from the low breakdown strength, has been the major challenge for practical applications of dielectric capacitors. Herein, we propose a heterovalent-doping-enabled atom-displacement fluctuation strategy for the design of low-atom-displacements regions in the antiferroelectric matrix to achieve the increase in breakdown strength and enhancement of the energy-storage density for AgNbO3-based multilayer capacitors. An ultrahigh breakdown strength ~1450 kV·cm-1 is realized in the Sm0.05Ag0.85Nb0.7Ta0.3O3 multilayer capacitors, especially with an ultrahigh Urec ~14 J·cm-3, excellent η ~ 85% and PD,max ~ 102.84 MW·cm-3, manifesting a breakthrough in the comprehensive energy storage performance for lead-free antiferroelectric capacitors. This work offers a good paradigm for improving the energy storage properties of antiferroelectric multilayer capacitors to meet the demanding requirements of advanced energy storage applications.

4.
Nat Commun ; 13(1): 6087, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241619

RESUMO

GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.

6.
ACS Appl Mater Interfaces ; 14(27): 30991-30999, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759732

RESUMO

One of the notorious problems in BiFeO3-based piezoelectric ceramics is how to limit the formation of Bi25FeO39 and Bi2Fe4O9 impurities to achieve excellent piezoelectric performance. In this study, a one-step preparation technology, namely, excluding PVA, calcining, and sintering are completed in one step, instead of three steps in the ordinary sintering method, is developed to prepare BiFeO3-xBaTiO3 (BF-xBT) ceramics. The significance of this one-step method is that the thermodynamically unstable region of BiFeO3 is successfully avoided based on the Gibbs free energy of BiFeO3, Bi25FeO39, and Bi2Fe4O9. Benefiting from preventing the formation of Bi25FeO39 and Bi2Fe4O9 impurities, the resultant ceramics show dense structures, macroscopic stripe domains, and a small number of island domains and display saturated P-E curves, sharp I-V characteristics, butterfly-shape S-E loops, and good piezoelectric properties (d33 = 174-199 pC/N; TC = 494-513 °C). By analyzing X-ray diffraction patterns of BF-xBT (0 ≤ x ≤ 1) powders at different calcination temperatures (Tcal), the different reaction mechanisms between 750 °C ≤ Tcal ≤ 900 °C and 950 °C ≤ Tcal ≤ 1000 °C are revealed. When 750 °C ≤ Tcal ≤ 900 °C, Bi3+ diffuses into Fe2O3 particles to form BiFeO3 and Bi25FeO39 and then reacts with BaTiO3; in this temperature range, the formed Bi25FeO39 is hard to eliminate. At 950 °C ≤ Tcal ≤ 1000 °C, Bi3+ and Fe ions simultaneously diffuse into BaTiO3 to form BF-xBT, which is beneficial to preventing the formation of Bi25FeO39 and the improvement of performance.

7.
World Allergy Organ J ; 15(5): 100651, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600837

RESUMO

Background: House dust mites (HDMs) are the main source of indoor inhalatory allergens that cause IgE-mediated allergic diseases. The discovery and identification of HDM allergens are important for the diagnosis and treatment of allergic diseases. Objective: We sought to identify a Group 39 Dermatophagoides pteronyssinus (Der p) allergen, namely Der p 39, and explore its immunodominant IgE epitopes. Methods: Homology analysis of amino acid (aa) sequences in HDM and human troponin C (TnC)-like protein was performed. Total RNA of Der p was extracted and used to amplify Der p 39 cDNA with specific primers. Recombinant Der p 39 protein was expressed with a pET-His prokaryotic expression system and purified with Ni-NTA resins. IgE binding was evaluated with western blot, dot blot, and enzyme-linked immunosorbent assay (ELISA) experiments. The IgE binding epitopes of Der p 39 were identified by observing HDM-allergic sera interactions with truncated and hybrid proteins formed from Der p 39 and human TnC-like proteins. Results: The Der p 39 open reading frame (ORF) cDNA was found to be 462 base pairs and registered in the NCBI library (GenBank no. MZ336019.1). Der p 39, which encoded 153 aa, was found to have 35.63% and 99.35% homology with human TnC and Dermatophagoides farina (Der f) 39, respectively. IgE-ELISA showed IgE binding with expressed and purified recombinant Der p 39 (18 kDa) in 5/87 (5.75%) HDM-allergic sera samples. Analyses of IgE binding with Der p 39-based truncated and hybrid proteins indicated that IgE binding epitopes are likely located in the C-terminal region and dependent on conformational structure. The data from this study were submitted to the World Health Organization and International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature database. Conclusion: Der p 39 was identified as a minor HDM allergen with a conformational IgE binding epitope. These findings could have important theoretical implications in the development of HDM allergy diagnostics and therapeutics.

8.
Food Funct ; 13(6): 3621-3631, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262138

RESUMO

Mast cells (MCs) are the main effector cells in the onset of high-affinity receptor for IgE (FcεRI)-mediated allergic diseases. The aim of this study was to test whether dihydrocoumarin (DHC), a food flavoring agent derived from Melilotus officinalis, can block IgE-induced MC activation effects and to examine the potential molecular mechanisms by which DHC affects MC activation. Rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin antigen, and treated with DHC. Western blot analyses were performed to detect the expression of signaling proteins. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine DHC effects on allergic reactions in vivo. DHC inhibited MC degranulation, as evidenced by reduced ß-hexosaminidase activity and histamine levels, and reduced morphological changes associated with MC activation, namely cellular elongation and F-actin reorganization. DHC inhibited the activation of MAPK, NF-κB, and AP-1 pathways in IgE-activated MCs. Additionally, DHC could attenuate IgE/Ag-induced allergic reactions (dye extravasation and ear thickening) in PCA as well as OVA challenge-induced reactions in ASA mice (body temperature, serum histamine and IL-4 secretion changes). In conclusion, DHC suppressed MC activation. DHC may represent a new MC-suppressing treatment strategy for the treatment of IgE-mediated allergic diseases.


Assuntos
Anafilaxia , Mastócitos , Anafilaxia/tratamento farmacológico , Animais , Degranulação Celular , Aromatizantes/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Camundongos , Anafilaxia Cutânea Passiva , Ratos
9.
Adv Mater ; 33(43): e2103633, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34494316

RESUMO

Pores in a solid can effectively reduce thermal conduction, but they are not favored in thermoelectric materials due to simultaneous deterioration of electrical conductivity. Conceivably, creating a porous structure may endow thermoelectric performance enhancement provided that overwhelming reduction of electrical conductivity can be suppressed. This work demonstrates such an example, in which a porous structure is formed leading to a significant enhancement in the thermoelectric figure of merit (zT). By a unique BiI3 sublimation technique, pore networks can be introduced into tetrahedrite Cu12 Sb4 S13 -based materials, accompanied by changes in their hierarchical structures. The addition of a small quantity of BiI3 (0.7 vol%) results in a ≈72% reduction in the lattice thermal conductivity, whereas the electrical conductivity is improved due to unexpected enhanced carrier mobility. As a result, an enhanced zT of 1.15 at 723 K in porous tetrahedrite and a high conversion efficiency of 6% at ΔT = 419 K in a fabricated segmented single-leg based on this porous material are achieved. This work offers an effective way to concurrently modulate the electrical and thermal properties during the synthesis of high-performance porous thermoelectric materials.

10.
ACS Appl Mater Interfaces ; 13(3): 4192-4202, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438390

RESUMO

BiFeO3-BaTiO3 is a promising high-temperature piezoelectric ceramic that possesses both good electromechanical properties and a Curie temperature (TC). Here, the piezoelectric charge constants (d33) and strain coefficients (d*33) of (1 - x)BiFeO3-xBaTiO3 (BF-xBT; 0.20 ≤ x ≤ 0.50) lead-free piezoelectrics were investigated at room temperature. The results showed a maximum d33 of 225 pC/N in the BF-0.30BT ceramic and a maximum d*33 of 405 pm/V in the BF-0.35BT ceramic, with TCs of 503 and 415 °C, respectively. To better understand the performance enhancement mechanisms, a phase diagram was established using the results of XRD, piezoresponse force microscopy, TEM, and electrical property measurements. The superb d33 of the BF-0.30BT ceramic arose because of its location in the optimum point in the morphotropic phase boundary, low oxygen vacancy (VO··) concentration, and domain heterogeneity. The superior d*33 of the BF-0.35BT ceramic was attributed to a weak relaxor behavior between coexisting macrodomains and polar nanoregions. The presented strategy provides guidelines for designing high-temperature BF-BT ceramics for different applications.

11.
Neurochem Res ; 45(9): 2128-2142, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556930

RESUMO

The abnormal production of short chain fatty acid (SCFAs) caused by gut microbial dysbiosis plays an important role in the pathogenesis and progression of Parkinson's disease (PD). This study sought to evaluate how butyrate, one of SCFAs, affect the pathology in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated mouse model of PD. Sodium butyrate (NaB; 165 mg/kg/day i.g., 7 days) was administrated from the day after the last MPTP injection. Interestingly, NaB significantly aggravated MPTP-induced motor dysfunction (P < 0.01), decreased dopamine (P < 0.05) and 5-HT (P < 0.05) levels, exacerbated declines of dopaminergic neurons (34%, P < 0.05) and downregulated expression of tyrosine hydroxylase (TH, 47%, P < 0.05), potentiated glia-mediated neuroinflammation by increasing the number of microglia (17%, P < 0.05) and activating astrocytes (28%, P < 0.01). In vitro study also confirmed that NaB could significantly exacerbate pro-inflammatory cytokines expression (IL-1ß, 4.11-fold, P < 0.01; IL-18, 3.42-fold, P < 0.01 and iNOS, 2.52-fold, P < 0.05) and NO production (1.55-fold, P < 0.001) in LPS-stimulated BV2 cells. In addition, NaB upregulated the expression of pro-inflammatory cytokines (IL-6, 3.52-fold, P < 0.05; IL-18, 1.72-fold, P < 0.001) and NLRP3 (3.11-fold, P < 0.001) in the colon of PD mice. However, NaB had no effect on NFκB, MyD88 and TNF-α expression in PD mice. Our results indicate that NaB exacerbates MPTP-induced PD by aggravating neuroinflammation and colonic inflammation independently of the NFκB/MyD88/TNF-α signaling pathway.


Assuntos
Ácido Butírico/toxicidade , Inflamação/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular , Colo/efeitos dos fármacos , Citocinas/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Hipocinesia/fisiopatologia , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Serotonina/metabolismo , Junções Íntimas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Research (Wash D C) ; 2020: 1672051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190833

RESUMO

The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg1-Mg2 distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = µm ∗3/2) and hence thermoelectric power factor of Mg3+δ Sb2-y Bi y family near room temperature. Mg3+δ Sb0.5Bi1.5 has a high carrier mobility of 247 cm2 V-1 s-1 and a record power factor of 3470 µW m-1 K-2 at room temperature. Considering both efficiency and power density, Mg3+δ Sb1.0Bi1.0 with a high average ZT of 1.13 and an average power factor of 3184 µW m-1 K-2 in the temperature range of 50-250°C would be a strong candidate to replace the conventional n-type thermoelectric material Bi2Te2.7Se0.3. The protection of the transport channel through Mg sublattice means alloying on Sb sublattice has little effect on electron while it significantly reduces phonon thermal conductivity, providing us an approach to decouple electron and phonon transport for better thermoelectric materials.

13.
Exp Cell Res ; 387(1): 111772, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31836471

RESUMO

Aggregation of α-Synuclein is central to the pathogenesis of Parkinson's disease (PD). However, these α-Synuclein inclusions are not only present in brain, but also in gut. Enteroendocrine cells (EECs), which are directly exposed to the gut lumen, can express α-Synuclein and directly connect to α-Synuclein-containing nerves. Dysbiosis of gut microbiota and microbial metabolite short-chain fatty acids (SCFAs) has been implicated as a driver for PD. Butyrate is an SCFA produced by the gut microbiota. Our aim was to demonstrate how α-Synuclein expression in EECs responds to butyrate stimulation. Interestingly, we found that sodium butyrate (NaB) increases α-Synuclein mRNA expression, enhances Atg5-mediated autophagy (increased LC3B-II and decreased SQSTM1 (also known as p62) expression) in murine neuroendocrine STC-1 cells. Further, α-Synuclein mRNA was decreased by the inhibition of autophagy by using inhibitor bafilomycin A1 or by silencing Atg5 with siRNA. Moreover, the PI3K/Akt/mTOR pathway was significantly inhibited and cell apoptosis was activated by NaB. Conditioned media from NaB-stimulated STC-1 cells induced inflammation in SH-SY5Y cells. Collectively, NaB causes α-Synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Ácido Butírico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Camundongos , RNA Mensageiro/metabolismo
14.
Nanoscale ; 11(21): 10306-10313, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31099817

RESUMO

Motivated by the recent experimental exfoliation of ß-Cu2S thin films and the theoretical finding of a new phase labeled the δ-Cu2S monolayer, we carried out extensive studies on thermal conductivity and thermoelectric properties of the new phase using first principles combined with Boltzmann transport theory, focusing on the analysis of group velocities, Gruneisen parameters, three-phonon scattering rates, and the scattering phase space. Our results show that the δ-Cu2S monolayer exhibits an intrinsically ultralow lattice thermal conductivity of 0.10 W m-1 K-1 at 800 K. Such an ultralow lattice thermal conductivity leads to a high thermoelectric figure of merit ZT = 1.33 at 800 K in an optimum p-type doping concentration, which is not only larger than the value of 1.23 in In2S3 doped Cu2S at 850 K but also comparable with the value of 1.7 in Cu1.97S at 1000 K, exhibiting good potential in thermoelectric applications.

15.
Neurotherapeutics ; 16(3): 741-760, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30815845

RESUMO

Parkinson's disease (PD) is strongly associated with life style, especially dietary habits, which have gained attention as disease modifiers. Here, we report a fasting mimicking diet (FMD), fasting 3 days followed by 4 days of refeeding for three 1-week cycles, which accelerated the retention of motor function and attenuated the loss of dopaminergic neurons in the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mice. Levels of brain-derived neurotrophic factor (BDNF), known to promote the survival of dopaminergic neurons, were increased in PD mice after FMD, suggesting an involvement of BDNF in FMD-mediated neuroprotection. Furthermore, FMD decreased the number of glial cells as well as the release of TNF-α and IL-1ß in PD mice, showing that FMD also inhibited neuro-inflammation. 16S and 18S rRNA sequencing of fecal microbiota showed that FMD treatment modulated the shifts in gut microbiota composition, including higher abundance of Firmicutes, Tenericutes, and Opisthokonta and lower abundance of Proteobacteria at the phylum level in PD mice. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry revealed that FMD modulated the MPTP-induced lower propionic acid and isobutyric acid, and higher butyric acid and valeric acid and other metabolites. Transplantation of fecal microbiota, from normal mice with FMD treatment to antibiotic-pretreated PD mice increased dopamine levels in the recipient PD mice, suggesting that gut microbiota contributed to the neuroprotection of FMD for PD. These findings demonstrate that FMD can be a new means of preventing and treating PD through promoting a favorable gut microbiota composition and metabolites.


Assuntos
Jejum , Microbioma Gastrointestinal , Transtornos Parkinsonianos/prevenção & controle , Animais , Western Blotting , Química Encefálica , Fator Neurotrófico Derivado do Encéfalo/análise , Corpo Estriado/química , Dopamina/análise , Dopamina/metabolismo , Ensaio de Imunoadsorção Enzimática , Jejum/fisiologia , Imunofluorescência , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/dietoterapia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Serotonina/análise , Serotonina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
RSC Adv ; 9(9): 5045-5052, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35514666

RESUMO

Nobel metal (Au and Ag) nanoparticles are often used in semiconductor photocatalysis to enhance the photocatalytic activity, while inexpensive Cu attracts less attention due to its easy oxidization. Herein, an elaborate study was conducted using Cu-nanoparticle-dispersed amorphous BaTiO3 films as photocatalysts. Photocatalytic and photoelectrochemical measurements demonstrated that the degradation efficiency and photocurrent density of the nanocomposite films are approximately 3.5 and 10 times as high as the pristine BaTiO3 film, respectively, which can be ascribed to a synergetic effect of the surface plasmon resonance and interband excitation. In addition, a good stability was also demonstrated by cyclic tests for the degradation of rhodamine B, which may be due to the amorphous nature of the BaTiO3 matrix providing hole-trapping centers. The high photocatalytic stability suggests that Cu is a promising alternative metal to replace Au and Ag for the development of cost-effective photocatalysts. Our work demonstrates a simple and promising strategy for improving the photostability of Cu nanomaterials and may provide a useful guideline for designing Cu-based composite materials toward various photocatalytic applications such as water pollution treatment.

17.
RSC Adv ; 9(25): 14422-14431, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35519293

RESUMO

Intrinsic Bi2Te3 is a representative thermoelectric (TE) material with high performance at low temperature, which enables applications for electronic cooling. However, antisite defects easily form in p-type Bi2Te3, resulting in the difficulty of further property enhancement. In this work, the formation energy of native point defects in Bi2Te3 supercells and the electronic structure of Bi2Te3 primitive unit cell were calculated using first-principles. The antisite defect Bi_Te1 has a lower formation energy (0.68 eV) under the Te-lack condition for p-type Bi2Te3. The effects of point defects on TE properties were investigated via a series of p-type Bi2Te3-x (x = 0, 0.02, 0.04, 0.06, 0.08) single crystals prepared by the temperature gradient growth method (TGGM). Apart from the increased power factor (PF∥) which originates from the increased carrier concentration (n ∥) and m*, the thermal conductivity (κ ∥) was also cut down by the increased point defects. Benefitting from the high PF∥ of 4.09 mW m-1 K-2 and the low κ ∥ of 1.77 W m-1 K-1, the highest ZT ∥ of 0.70 was obtained for x = 0.06 composition at 300 K, which is 30% higher than that (0.54) of the intrinsic Bi2Te3.

18.
Research (Wash D C) ; 2019: 9253132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31922144

RESUMO

Thermoelectric materials, which directly convert heat into electricity based on the Seebeck effects, have long been investigated for use in semiconductor refrigeration or waste heat recovery. Among them, SnSe has attracted significant attention due to its promising performance in both p-type and n-type crystals; in particular, a higher out-of-plane ZT value could be achieved in n-type SnSe due to its 3D charge and 2D phonon transports. In this work, the thermoelectric transport properties of n-type polycrystalline SnSe were investigated with an emphasis on the out-of-plane transport through producing textural microstructure. The textures were fabricated using mechanical alloying and repeated spark plasma sintering (SPS), as a kind of hot pressing, aimed at producing strong anisotropic transports in n-type polycrystalline SnSe as that in crystalline SnSe. Results show that the lowest thermal conductivity of 0.36 Wm-1 K-1 was obtained at 783 K in perpendicular to texture direction. Interestingly, the electrical transport properties are less anisotropic and even nearly isotropic, and the power factors reach 681.3 µWm-1 K-2 at 783 K along both parallel and perpendicular directions. The combination of large isotropic power factor and low anisotropic thermal conductivity leads to a maximum ZT of 1.5 at 783 K. The high performance elucidates the outstanding electrical and thermal transport behaviors in n-type polycrystalline SnSe, and a higher thermoelectric performance can be expected with future optimizing texture in n-type polycrystalline SnSe.

19.
ACS Appl Mater Interfaces ; 10(38): 32201-32211, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30178653

RESUMO

Chalcogenides have been considered as promising thermoelectric materials because of their low cost, nontoxicity, and environmental benignity. In this work, we synthesized a series of Cu2S1- xTe x (0 ≤ x ≤ 1) alloys by a facile, rapid method of mechanical alloying combined with spark plasma sintering process. The Cu2S1- xTe x system provides an excellent vision of the competition between pure phase and phase transformation, entropy-driven solid solution, and enthalpy-driven phase separation. When the Te concentration increases, the Cu2S1- xTe x system changed from the pure monoclinic Cu2S at x = 0 to monoclinic Cu2S1- xTe x solid solution at 0.02 ≤ x ≤ 0.06 and then transforms to hexagonal Cu2S1- xTe x solid solution at 0.08 ≤ x ≤ 0.1. The phase separation of hexagonal Cu2Te in the hexagonal Cu2S matrix occurs at 0.3 ≤ x ≤ 0.7 and finally forms the hexagonal Cu2Te at x = 1. Owing to the changed band structure and the coexisted Cu2S and Cu2Te phases, greatly enhanced power factor was achieved in all Cu2S1- xTe x (0 < x < 1) alloys. Meanwhile, the point defect introduced by the substitution of Te/S atoms strengthened the phonon scattering, resulting in a lowered lattice thermal conductivity in most of these solid solutions. As a consequence, Cu2S0.94Te0.06 exhibits a maximum ZT value of 1.18 at 723 K, which is about 3.7 and 14.8 times as compared to the values of pristine Cu2S (0.32) and Cu2Te (0.08), respectively.

20.
RSC Adv ; 8(62): 35794-35801, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35547893

RESUMO

The temperature-dependence behaviors of ferroelectric, piezoelectric, k p and electrical-field-induced strain were carefully evaluated for high-performance BiFeO3-0.3BaTiO3 (BF-0.3BT) ceramics. There results indicate, combined with Rayleigh analysis and temperature-dependence XRD and PFM, that the increase of strain and large signal with increasing the temperature from room temperature to 180 °C is related to the joint effect of intrinsic contribution (lattice expansion) and extrinsic contribution (domain switching). With further increasing the temperature to 300 °C, the large signal d 33 and electrical-field-induced strain mildly decrease because of the increase of conductivity for BF-0.3BT ceramics. However, different from strain and large signal the small signal d 33(E0) and k p exhibit excellent temperature stability behavior as the temperature increases from room temperature to 300 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA