Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38654471

RESUMO

CONTEXT: Congenital hypothyroidism (CH) is the most common endocrine disorder in neonates, but its etiology is still poorly understood. OBJECTIVE: We performed whole exome sequencing to identify novel causative gene for CH and functional studies to validate its role in the occurrence of CH. METHODS: Whole exome sequencing in 98 CH patients not harboring known CH candidate genes and bioinformatic analysis were performed. Functional analysis was performed using morpholino, a synthetic short antisense oligonucleotide that contains 25 DNA bases on a methylene morpholine backbone, in zebrafish and CRISPR‒Cas9-mediated gene knockout in mice. RESULTS: Eukaryotic translation initiation factor 4B (EIF4B) was identified as the most promising candidate gene. The EIF4B gene was inherited in an autosomal recessive model, and one patient with thyroid dysgenesis carried EIF4B biallelic variants (p.S430F/p.P328L). In zebrafish, the knockdown of eif4ba/b expression caused thyroid dysgenesis and growth retardation. Thyroid hormone levels were significantly decreased in morphants compared with controls. Thyroxine treatment in morphants partially rescued growth retardation. In mice, the homozygous conceptuses of Eif4b+/- parents did not survive. Eif4b knockout embryos showed severe growth retardation, including thyroid dysgenesis and embryonic lethality before E18.5. CONCLUSION: These experimental data supported a role for EIF4B function in the pathogenesis of the hypothyroid phenotype seen in CH patients. Our work indicated that EIF4B was identified as a novel candidate gene in CH. EIF4B is essential for animal survival, but further studies are needed to validate its role in the pathogenesis of CH.

2.
Front Endocrinol (Lausanne) ; 14: 920548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824359

RESUMO

Background: ISL LIM homeobox 2, also known as insulin gene enhancer protein ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of developmental events. However, the role of ISL2 in the hypothalamus-pituitary-thyroid axis is largely unknown. In the present study, we characterized the expression patterns of ISL2 and revealed its regulative role during embryogenesis using zebrafish. Methods: We used the CRISPR/Cas9 system to successfully establish homozygous ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For further molecular characterization, in situ hybridization and immunofluorescence were performed. Results: The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced whole-body levels of thyroid hormones, increased early mortality, gender imbalance, and morphological retardation during maturity. Additionally, thyrotropes, a pituitary cell type, was notably decreased during development. Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants. Finally, the thyroid dysplasia in isl2a mutant larvae may be attributed to a reduction in proliferation rather than changes in apoptosis. Conclusions: In summary, isl2a regulates the transcriptional levels of marker genes in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland hypoplasia and phenotypes of hypothyroidism.


Assuntos
Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Hipófise/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Clin Transl Med ; 13(1): e1007, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627765

RESUMO

BACKGROUND: SMC5/6 complex plays a vital role in maintaining genome stability, yet the relationship with human diseases has not been described. METHODS: SMC5 variation was identified through whole-exome sequencing (WES) and verified by Sanger sequencing. Immunoprecipitation, cytogenetic analysis, fluorescence activated cell sorting (FACS) and electron microscopy were used to elucidate the cellular consequences of patient's cells. smc5 knockout (KO) zebrafish and Smc5K371del knock-in mouse models were generated by CRISPR-Cas9. RNA-seq, quantitative real-time PCR (qPCR), western blot, microquantitative computed tomography (microCT) and histology were used to explore phenotypic characteristics and potential mechanisms of the animal models. The effects of Smc5 knockdown on mitotic clonal expansion (MCE) during adipogenesis were investigated through Oil Red O staining, proliferation and apoptosis assays in vitro. RESULTS: We identified a homozygous in-frame deletion of Arg372 in SMC5, one of the core subunits of the SMC5/6 complex, from an adult patient with microcephalic primordial dwarfism, chromosomal instability and insulin resistance. SMC5 mutation disrupted its interaction with its interacting protein NSMCE2, leading to defects in DNA repair and chromosomal instability in patient fibroblasts. Smc5 KO zebrafish showed microcephaly, short length and disturbed glucose metabolism. Smc5 depletion triggers a p53-related apoptosis, as concomitant deletion of the p53 rescued growth defects phenotype in zebrafish. An smc5K371del knock-in mouse model exhibited high mortality, severe growth restriction and fat loss. In 3T3-L1 cells, the knockdown of smc5 results in impaired MCE, a crucial step in adipogenesis. This finding implies that defective cell survival and differentiation is an important mechanism linking growth disorders and metabolic homeostasis imbalance.


Assuntos
Nanismo , Resistência à Insulina , Animais , Camundongos , Adulto , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Resistência à Insulina/genética , Proteína Supressora de Tumor p53/genética , Nanismo/genética , Fenótipo , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ligases/genética , Ligases/metabolismo
4.
J Clin Res Pediatr Endocrinol ; 14(1): 46-55, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34545167

RESUMO

Objective: Defects in the human solute carrier family 26 member 4 (SLC26A4) gene are reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify SLC26A4 mutations in Chinese patients with CH and analyze the function of the mutations. Methods: Patients with primary CH were screened for 21 CH candidate genes mutations by targeted next-generation sequencing. All the exons and exon-intron boundaries of SLC26A4 were identified and analyzed. The function of six missense mutation in SLC26A4 were further investigated in vitro. Results: Among 273 patients with CH, seven distinct SLC26A4 heterozygous mutations (p.S49R, p.I363L, p.R409H, p.T485M, p.D661E, p.H723R, c.919-2A>G) were identified in 10 patients (3.66%, 10/273). In vitro experiments showed that mutation p.I363L, p.R409H, p.H723R affect the membrane location and ion transport of SLC26A4, while p.S49R did not. Mutation p.T485M and p.D661E only affected ion transport, but had no effect on the membrane location. Conclusion: The prevalence of SLC26A4 mutations was 3.66% in Chinese patients with CH. Five mutations (p.I363L, p.R409H, p.T485M, p.D661E and p.H723R) impaired the membrane location or ion transport function of SLC26A4, suggesting important roles for Ile363, Arg409, Thr485, Asp661, and His723 residues in SLC26A4 function. As all variants identified were heterozygous, the pathogenesis of these patients cannot be explained, and the pathogenesis of these patients needs further study.


Assuntos
Hipotireoidismo Congênito , Perda Auditiva Neurossensorial , Transportadores de Sulfato , Povo Asiático/genética , China , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Perda Auditiva Neurossensorial/genética , Heterozigoto , Humanos , Mutação , Transportadores de Sulfato/genética
5.
Genet Med ; 23(10): 1944-1951, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34194003

RESUMO

PURPOSE: Congenital hypothyroidism (CH) is a common congenital endocrine disorder in humans. CH-related diseases such as athyreosis, thyroid ectopy, and hypoplasia are primarily caused by dysgenic thyroid development. However, the underlying molecular mechanisms remain unknown. METHODS: To identify novel CH candidate genes, 192 CH patients were enrolled, and target sequencing of 21 known CH-related genes was performed. The remaining 98 CH patients carrying no known genes were subjected to exome sequencing (ES). The functions of the identified variants were confirmed using thyroid epithelial cells in vitro and in zebrafish model organisms in vivo. RESULTS: Four pathogenic GBP1 variations from three patients were identified. In zebrafish embryos, gbp1 knockdown caused defective thyroid primordium morphogenesis and hypothyroidism. The thyroid cells were stuck together and failed to dissociate from each other to form individual follicles in gbp1-deficient embryos. Furthermore, defects were restored with wild-type human GBP1 (hGBP1) messenger RNA (mRNA) except for mutated hGBP1 (p.H150Y, p.L187P) overexpression. GBP1 promoted ß-catenin translocation into the cytosol and suppressed the formation of cellular adhesion complexes. Suppression of cell-cell adhesion restored the thyroid primordium growth defect observed in gbp1-deficient zebrafish embryos. CONCLUSION: This study provides further understanding regarding thyroid development and shows that defective cellular remodeling could cause congenital hypothyroidism.


Assuntos
Hipotireoidismo Congênito , Proteínas de Ligação ao GTP , Disgenesia da Tireoide , Glândula Tireoide/crescimento & desenvolvimento , Animais , Hipotireoidismo Congênito/genética , Modelos Animais de Doenças , Proteínas de Ligação ao GTP/genética , Humanos , Morfogênese , Mutação , Regulação para Cima , Peixe-Zebra/genética
6.
Front Endocrinol (Lausanne) ; 12: 620117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815280

RESUMO

Background and Objectives: Defects in the human sodium/iodide symporter (SLC5A5) gene have been reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify SLC5A5 mutations in Chinese patients with CH and to evaluate the function of the mutation. Methods: Two hundred and seventy-three patients with primary CH were screened for mutations in SLC5A5 using next-generation sequencing. We investigated the expression and cellular localization of the novel compound heterozygous mutation in SLC5A5. The functional activity of the mutants was further examined in vitro. Results: In 273 patients with CH, two previously undescribed pathogenic mutations p.Gly51AlafsTer45 (G51fs) and p.Gly421Arg (G421R) in a compound heterozygous state in SLC5A5 were identified in a pediatric patient. G51fs was located in the first intercellular loop connecting transmembrane segment I and II, whereas G421R was in the transmembrane segment (TMS) XI. G51fs and G421R resulted in a truncated NIS and reduced protein expression, respectively. In vitro experiments further showed that the normal function of iodine transport of sodium-iodide symporter (NIS) mutants was markedly impaired. Conclusion: The undescribed compound heterozygous mutation of SLC5A5 was discovered in a Chinese CH patient. The mutation led to significantly reduced NIS expression and impaired iodide transport function accompanied by the impaired location of the NIS on the plasma membrane. Our study thus provides further insights into the roles of SLC5A5 in CH pathogenesis.


Assuntos
Hipotireoidismo Congênito/genética , Mutação , Simportadores/genética , China , Feminino , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido
7.
Thyroid ; 30(12): 1820-1830, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746755

RESUMO

Background: We aimed to examine the association of urinary iodine concentration with Hashimoto's thyroiditis (HT) risk, and particularly, to investigate whether the HT-related genetic variations might modify the effects of urinary iodine on HT in the Chinese Han population. Methods: We conducted a case-control study with 1723 Chinese (731 cases, 992 controls). The associations between urinary iodine concentration and HT risk were analyzed using logistic regression models. The effects of interactions between the genetic risk scores (GRSs) and urinary iodine on HT risk were assessed by including the respective interaction terms in the models. We also applied restricted cubic spline regression to estimate the possible nonlinear relationship. The multinomial logistic regression models were performed to determine the associations of urinary iodine with euthyroid-HT and hypothyroidism-HT. Results: After controlling for potential confounders, the odds of HT increased with increasing quartiles of urinary iodine concentration: adjusted odds ratios (ORs) and 95% confidence intervals [CIs] were 1.45 [1.06-1.99], 1.66 [1.17-2.34], and 2.07 [1.38-3.10] for the quartiles 2, 3, and 4, respectively, compared with the first quartile (p for trend <0.001). Multivariable restricted cubic spline regression analysis further demonstrated that there was a near-linear association between urinary iodine concentration and HT risk (p-overall <0.001; p-nonlinear = 0.074). However, we did not find significant interactions between urinary iodine and GRSs on the risk of HT (all p for interaction >0.05). Interestingly, we found that each increment of urinary iodine was associated with a more than twofold increase in the odds of hypothyroidism-HT (adjusted OR = 2.64 [CI = 1.73-4.05]), but not with euthyroid-HT (p > 0.05). Conclusions: Higher urinary iodine concentration was associated with increased risk of HT, and this association was near linear, indicating that increased urinary iodine has a continuous and graded impact on HT risk. Moreover, the iodine-HT association was not modified by genetic predisposition to HT. Interestingly, urinary iodine concentration was significantly associated with increased risk of hypothyroidism.


Assuntos
Doença de Hashimoto/genética , Doença de Hashimoto/urina , Iodo/urina , Polimorfismo de Nucleotídeo Único , Adulto , Povo Asiático/genética , Biomarcadores/urina , Estudos de Casos e Controles , China/epidemiologia , Feminino , Predisposição Genética para Doença , Doença de Hashimoto/diagnóstico , Doença de Hashimoto/etnologia , Humanos , Hipotireoidismo/diagnóstico , Hipotireoidismo/etnologia , Hipotireoidismo/urina , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
9.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246145

RESUMO

CONTEXT: Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the 2 main autoimmune thyroid diseases that have both similarities and differences. Determining the genetic basis that distinguishes HT from GD is key for a better understanding of the differences between these closely related diseases. OBJECTS: To identify the susceptibility genes for HT in the Chinese cohort and compare susceptibility genes between GD and HT. DESIGN: In the current study, 18 SNPs from 18 established GD risk loci were selected and then genotyped in 2682 patients with HT, 4980 patients with GD, and 3892 controls. The association analysis between HT and controls and heterogeneity analysis between HT and GD were performed on SPSS, with the logistic regression analysis adjusted for sex and age. RESULTS: We identified 11 susceptibility loci for HT in the Chinese Han population, with 4 loci, including the rs1265883 in SLAMF6 locus, rs1024161 in CTLA4, rs1521 in HLA-B, and rs5912838 in GPR174/ ITM2A at X chromosome, reaching genome-wide significance of 5 × 10-8. Five loci were reported to be associated with HT for the first time. We also identified 6 susceptibility loci with heterogeneity between GD and HT. Out of them, 4 loci were associated with GD but not with HT, including HLA-DPB1, CD40, TSHR, and TG; the association of HLA-B with GD was stronger than that with HT, but the association of SLAMF6 was reversed. CONCLUSION: Our findings suggested that the pathogenesis of HT and GD was different.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Doença de Graves/genética , Doença de Hashimoto/genética , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , Antígeno CTLA-4/genética , China , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Antígenos HLA-B/genética , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/genética
10.
Mol Cell Endocrinol ; 506: 110761, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088313

RESUMO

Inborn defects in thyroid hormone biosynthesis contribute to nearly half of congenital hypothyroidism (CH) cases in China. The thyroid peroxidase (TPO) mutation is one of the most frequent mutations that results in thyroid dyshormonogenesis. In this study, 35 non-synonymous mutations in 15 TPO sites, including 6 novel mutations, were identified in 230 Chinese patients with CH. The enzyme activity of the mutations in TPO was investigated in vitro, and patients with less than 15% residual enzyme activity showed severe CH, such as markedly increased thyroid-stimulating hormone (TSH) at diagnosis (>100 µIU/mL) and pronounced goiter, and required a higher dose of L-thyroxine to maintain the euthyroid. However, CH patients with greater than 16% TPO activity showed mild CH, a typical childhood socially without L-thyroxine treatment before 3 years of age, and the appearance of a macroscopic goiter at childhood. The findings indicated that the residual enzymatic activity of TPO was correlated with clinical phenotypes of CH patients with TPO biallelic mutations.


Assuntos
Autoantígenos/genética , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Adolescente , Adulto , Criança , Pré-Escolar , China/epidemiologia , Hipotireoidismo Congênito/tratamento farmacológico , Hipotireoidismo Congênito/epidemiologia , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Testes Genéticos/métodos , Células HEK293 , Terapia de Reposição Hormonal , Humanos , Lactente , Recém-Nascido , Padrões de Herança/genética , Masculino , Mutação , Triagem Neonatal/métodos , Linhagem , Polimorfismo de Nucleotídeo Único , Tiroxina/uso terapêutico , Adulto Jovem
11.
Clin Chim Acta ; 497: 147-152, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31356790

RESUMO

BACKGROUND: Defects in the human thyroid stimulating hormone receptor (TSHR) gene are reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify mutations in Chinese patients with CH and analyze the relationships between TSHR phenotypes and clinical phenotypes. METHODS: 220 patients with primary CH were screened for TSHR mutations by performing next-generation sequencing. All the exons and exon-intron boundaries of TSHR were analyzed. The function of 8 mutants in TSHR were further investigated in vitro. RESULTS: Among 220 patients with CH, 15 distinct TSHR mutations were identified in 13 patients (5.91%, 13/220, including our previous reported 110 patients, carried with 10 mutations in 8 patients). We found five distinct mutations in the additional cohort of 110 CH patients and identified 7 mutations (including a novel mutation, p.S567R) were loss-of-function mutations. CONCLUSION: Our study indicated that the prevalence of TSHR mutations was 5.91% among studied Chinese patients with CH. One novel TSHR variant was found and four genetic alterations revealed important role of the Ile216, Ala275, Asn372, Ser567 residues in signaling.


Assuntos
Povo Asiático/genética , Hipotireoidismo Congênito/genética , Análise Mutacional de DNA , Mutação , Receptores da Tireotropina/genética , Adulto , China , DNA/genética , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo
12.
Environ Int ; 126: 321-328, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825751

RESUMO

BACKGROUND: Thyroid nodules (TNs) are highly prevalent worldwide and have a pattern of female predominance. Bisphenol A (BPA) is an endocrine disruptor that can lead to adverse effects in human health. However, epidemiologic studies revealing the association between BPA exposure and TNs are limited and the results are inconsistent. We aimed to examine the association between urinary BPA and TNs in women who are more susceptible to TNs. METHODS: We conducted a case-control study with 1416 women aged 18 years or older (705 cases, 711 controls). All participants underwent thyroid ultrasonography. Urinary total BPA (free and conjugated) concentration was quantified using the HPLC-MS/MS. We analyzed the association between urinary BPA concentration and the risk of TNs using crude and multivariable logistic regression models. Participants were further stratified into thyroid autoantibody positive group (at least one positive) and thyroid autoantibody negative group (both negative) according to the thyroglobulin antibody (TGAb) and thyroid peroxidase antibody (TPOAb) levels, and restricted cubic spline regression was also applied to determine the possible nonlinear relationship between urinary BPA and TNs. RESULTS: Compared with women in the first quartile, the odds of TNs was 72% (adjusted OR = 1.72, 95% CI: 1.25 to 2.35) higher for those in the second quartile, 54% (adjusted OR = 1.54, 95% CI: 1.12 to 2.12) higher for those in the third quartile, and 108% (adjusted OR = 2.08, 95% CI: 1.50 to 2.90) higher for those in the fourth quartile after adjusting for age, BMI, education, HDL-C, LDL-C, triglyceride, total cholesterol, urinary iodine, TGAb and TPOAb. When the study population was stratified into thyroid autoantibody positive group and thyroid autoantibody negative group, we found that only in the positive group, the association was significant in model 1 (crude OR = 2.80; 95% CI = 1.90 to 4.12), model 2 (adjusted OR = 2.84; 95% CI = 1.91 to 4.22), model 3 (adjusted OR = 4.01; 95% CI = 2.57 to 6.27) and model 4 (adjusted OR = 3.71; 95% CI = 2.36 to 5.83). Multivariable-adjusted restricted cubic spline analysis demonstrated a similar result that in the thyroid autoantibody positive group, the association between urinary BPA and TNs risk was near linear (P-overall <0.001; P-non-linear = 0.054). CONCLUSION: In Chinese women, higher urinary BPA concentration was associated with increased risk of TNs only in those with positive thyroid autoantibodies. Moreover, this association was near linear, indicating that any rise in BPA exposure was associated with elevated TNs risk.


Assuntos
Compostos Benzidrílicos/urina , Disruptores Endócrinos/urina , Fenóis/urina , Nódulo da Glândula Tireoide/epidemiologia , Adulto , Autoanticorpos/sangue , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/sangue , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/urina , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA