Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821841

RESUMO

Crop diversification practices offer numerous synergistic benefits. So far, research has traditionally been confined to exploring isolated, unidirectional single-process interactions among plants, soil, and microorganisms. Here, we present a novel and systematic perspective, unveiling the intricate web of plant-soil-microbiome interactions that trigger cascading effects. Applying the principles of cascading interactions can be an alternative way to overcome soil obstacles such as soil compaction and soil pathogen pressure. Finally, we introduce a research framework comprising the design of diversified cropping systems by including commercial varieties and crops with resource-efficient traits, the exploration of cascading effects, and the innovation of field management. We propose that this provides theoretical and methodological insights that can reveal new mechanisms by which crop diversity increases productivity.

2.
Data Brief ; 53: 110269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533125

RESUMO

Farmers' decisions on crop choice, management practices, and livelihood strategies are essential to agricultural sustainability. This data article describes three datasets on crop production in Quzhou, a county in the central part of North China Plain. The three datasets cover different scales. The village dataset assembles basic data on all 342 villages of Quzhou county, including information on population, land area, crop grown, labour, irrigation and markets. Data was sourced from the yearbook data of 2017 and a village cadres survey in 2018. The village dataset was used to create a village typology from which 35 villages belonging to seven village types (five for each type) were selected for stratified random sampling to collect information on farm characteristics and cropping practices. We surveyed these 35 villages, interviewing fifteen farmer households per village (525 in total) in 2020. The interviewees represented two farm management models: smallholder farms and business farms. The resulting household dataset provides farm-level data, including demographic data of farming decision-makers and the number of household members, land use and machinery resources, crop production management practices, and government subsidies. The crop-level dataset was derived from the household survey and included input-output inventories for each crop grown during one year on each field greater than 1/30th ha (1/2 mu) on the 525 surveyed farms within a year. This dataset comprises information on cropping practices in 1352 fields. The three datasets provide a basis for analyses on cropping practices and sustainability attributes of farms and crops in a typical agricultural county on the North China Plain.

3.
J Environ Manage ; 347: 119060, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797509

RESUMO

The UN sustainable development goals ask countries to advance sustainable production methods in agriculture. While the need for a transition to sustainable agricultural production is widely felt, there is little insight into local stakeholders' perceptions regarding agroecosystem (dis)services in areas with intensive production methods. The North China Plain is an agricultural production area with intensive production systems and simplified agricultural landscapes. We conducted a survey with 267 farmers in Quzhou county in the North China Plain in 2020 to measure the perceived level of agroecosystem (dis)services supply and the changes therein between 2015 and 2020. We analyzed which explanatory factors were associated with farmers' perceptions. Provisioning services were at a high level, while the regulating and supporting ecosystem services were considered to be in low supply, as evidenced by low scores for the presence of natural enemies and earthworms, and for natural habitats such as hedgerows and windbreaks. Most of the participants did not perceive dis-services from agriculture. Differences in perception between villages with contrasting biophysical and socio-economic conditions highlight the relevance of contextualized policy development for agricultural landscape composition and configuration to manage ecosystem (dis)services.


Assuntos
Ecossistema , Fazendeiros , Humanos , Agricultura/métodos , Desenvolvimento Sustentável , China , Conservação dos Recursos Naturais/métodos
4.
J Microbiol ; 61(8): 765-775, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37665553

RESUMO

Phosphate-solubilizing fungi (PSF) efficiently dissolve insoluble phosphates through the production of organic acids. This study investigates the mechanisms of organic acid secretion by PSF, specifically Penicillium chrysogenum, under tricalcium phosphate (Ca3(PO4)2, Ca-P) and ferric phosphate (FePO4, Fe-P) conditions. Penicillium chrysogenum exhibited higher phosphorus (P) release efficiency from Ca-P (693.6 mg/L) than from Fe-P (162.6 mg/L). However, Fe-P significantly enhanced oxalic acid (1193.7 mg/L) and citric acid (227.7 mg/L) production by Penicillium chrysogenum compared with Ca-P (905.7 and 3.5 mg/L, respectively). The presence of Fe-P upregulated the expression of genes and activity of enzymes related to the tricarboxylic acid cycle, including pyruvate dehydrogenase and citrate synthase. Additionally, Fe-P upregulated the expression of chitinase and endoglucanase genes, inducing a transformation of Penicillium chrysogenum mycelial morphology from pellet to filamentous. The filamentous morphology exhibited higher efficiency in oxalic acid secretion and P release from Fe-P and Ca-P. Compared with pellet morphology, filamentous morphology enhanced P release capacity by > 40% and > 18% in Ca-P and Fe-P, respectively. This study explored the strategies employed by PSF to improve the dissolution of different insoluble phosphates.

5.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376382

RESUMO

Cellulose, a kind of polymer containing abundant functional groups, has widespread use in the adsorptive removal of environmental pollutants. An efficient and environmental friendly polypyrrole (PPy) coating approach is employed to modify the agricultural by-product straw derived cellulose nanocrystal (CNC) into excellent property adsorbents for removing the heavy metal ion of Hg(II). The FT-IR and SEM-EDS results demonstrated that PPy is formed on the surface of CNC. Consequently, the adsorption measurements proved that the obtained PPy-modified CNC (CNC@PPy) possesses a remarkably enhanced Hg(II) adsorption capacity of 1095 mg g-1, owing to a plentiful functional group of doped Cl element on the surface of CNC@PPy by forming Hg2Cl2 precipitate. The results of the study suggest that the Freundlich model is more effective than the Langmuir model at describing the isotherms, while the pseudo-second order kinetic model is better suited to correlating with the experimental data compared to the pseudo-first order model. Further, the CNC@PPy exhibits an outstanding reusability, capable of maintaining 82.3% of its original Hg(II) adsorption capacity after five successive adsorption cycles. The findings of this work reveal a method to convert the agricultural by-product into high performance environmental remediation materials.

6.
Front Microbiol ; 14: 1173442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125169

RESUMO

Bacteria is one of the most important drivers of straw degradation. However, the changes in bacterial community assemblage and straw-decomposing profiles during straw decomposition are not well understood. Based on cultivation-dependent and independent technologies, this study revealed that the "common species" greatly contributed to the dynamic variation of bacterial community during straw decomposition. Twenty-three functional strains involved in straw decomposition were isolated, but only seven were detected in the high-throughput sequencing data. The straw decomposers, including the isolated strains and the agents determined by functional prediction, constituted only 0.024% (on average) of the total bacterial community. The ecological network showed that most of the identified decomposers were self-existent without associations with other species. These results showed that during straw composition, community assembly might be greatly determined by the majority, but straw decomposition functions might be largely determined by the minority and emphasized the importance of the rare species in community-specific functions.

7.
Front Microbiol ; 14: 1188167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200919

RESUMO

Manure is a potential substitute for chemical phosphate fertilizer, especially in intensive agriculture, such as greenhouse farming, but the associations between soil phosphorus (P) availability and the soil microbial community under manure application instead of chemical phosphate fertilizers are still rarely addressed. In this study, a field experiment in greenhouse farming with manure application instead of chemical phosphate fertilizers was established, including five treatments: a control with conventional fertilization and chemical phosphate fertilizer substitution treatments using manure as the sole P resource at 25% (0.25 Po), 50% (0.50 Po), 75% (0.75 Po), and 100% (1.00 Po) of the control. Except for 1.00 Po, all the treatments applied with manure harbored similar levels of available P (AP) as the control. Most of the bacterial taxa involved in P transformation were enriched in manure treatments. Treatments of 0.25 Po and 0.50 Po significantly enhanced bacterial inorganic P (Pi) dissolution capacity, while 0.25 Po decreased bacterial organic P (Po) mineralization capacity. In contrast, the 0.75 Po and 1.00 Po treatments significantly decreased the bacterial Pi dissolution capacity and increased the Po mineralization capacity. Further analysis revealed that the changes in the bacterial community were significantly correlated with soil pH, total carbon (TC), total nitrogen (TN), and AP. These results revealed the dosage effect of the impact of manure on soil P availability and microbial P transformation capacity and emphasized that an appropriate dosage of organic manure is important in practical production.

8.
Front Bioeng Biotechnol ; 11: 1180431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064227

RESUMO

Lead (Pb) is one of the most common heavy metal pollutants in the environment, which can indirectly or directly threaten human health. Lead immobilization by apatite can reduce the effectiveness of Pb cations via the formation of pyromorphite (Pyro). However, the formation of Pyro is always depending on the release of phosphorus (P) from apatite. Phosphate-solubilizing fungi (PSF) can secrete large amounts of organic acid to promote the release of P from apatite. Although the combination of PSF and apatite has shown a huge potential in Pb remediation, this pathway needs to be more attention, especially for organic acid secretion by PSF. This research mainly reviews the possible pathway to strengthen Pb immobilization by PSF and apatite. Meanwhile, the limitation of this approach is also reviewed, with the aim of a better stabilizing effect of Pb in the environment and promoting the development of these remediation technologies.

9.
Polymers (Basel) ; 15(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112065

RESUMO

Phosphorus is one of the important metabolic elements for living organisms, but excess phosphorus in water can lead to eutrophication. At present, the removal of phosphorus in water bodies mainly focuses on inorganic phosphorus, while there is still a lack of research on the removal of organic phosphorus (OP). Therefore, the degradation of OP and synchronous recovery of the produced inorganic phosphorus has important significance for the reuse of OP resources and the prevention of water eutrophication. Herein, a novel FeOOH-loaded aminated polyacrylonitrile fiber (PANAF-FeOOH) was constructed to enhance the removal of OP and phosphate. Taking phenylphosphonic acid (PPOA) as an example, the results indicated that modification of the aminated fiber was beneficial to FeOOH fixation, and the PANAF-FeOOH prepared with 0.3 mol L-1 Fe(OH)3 colloid had the best performance for OP degradation. The PANAF-FeOOH efficiently activated peroxydisulfate (PDS) for the degradation of PPOA with a removal efficiency of 99%. Moreover, the PANAF-FeOOH maintained high removal capacity for OP over five cycles as well as strong anti-interference in a coexisting ion system. In addition, the removal mechanism of PPOA by the PANAF-FeOOH was mainly attributed to the enrichment effect of PPOA adsorption on the fiber surface's special microenvironment, which was more conducive to contact with SO4•- and •OH generated by PDS activation. Furthermore, the PANAF-FeOOH prepared with 0.2 mol L-1 Fe(OH)3 colloid possessed excellent phosphate removal capacity with a maximal adsorption quantity of 9.92 mg P g-1. The adsorption kinetics and isotherms of the PANAF-FeOOH for phosphate were best depicted by pseudo-quadratic kinetics and a Langmuir isotherm model, showing a monolayer chemisorption procedure. Additionally, the phosphate removal mechanism was mainly due to the strong binding force of iron and the electrostatic force of protonated amine on the PANAF-FeOOH. In conclusion, this study provides evidence for PANAF-FeOOH as a potential material for the degradation of OP and simultaneous recovery of phosphate.

10.
Proc Natl Acad Sci U S A ; 120(2): e2201886120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595678

RESUMO

Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.


Assuntos
Ecossistema , Fabaceae , Agricultura/métodos , Produtos Agrícolas , Grão Comestível
11.
Front Bioeng Biotechnol ; 10: 1078626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561049

RESUMO

The shortage of phosphorus (P) as a resource represents a major challenge for the sustainable development of agriculture. Manure has a high P content and is a potential substitute for mineral P fertilizers. However, little is known about the effects on soil P availability and soil microbial P transformation of substituting manure for mineral P fertilizers. In this study, variations in soil P availability and bacterial P mobilization were evaluated under treatment with manure as compared to mineral P fertilizers. In the greenhouse fruit and vegetable production system that provided the setting for the study, substitution of manure for mineral P (PoR treatment) resulted in a similar level of soil total P and a similar fruit and vegetable yield as compared to traditional fertilization, but a significantly increased level of soil available P. In addition, PoR treatment enhanced bacterial organic P mineralization potential and decreased inorganic P dissolution potential. These results demonstrate that manure application increases the availability of soil P primarily by enhancing soil microbial Po mineralization, indicating the potential feasibility of applying manure instead of mineral P fertilizers in greenhouse farming.

12.
Front Microbiol ; 13: 972587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992682

RESUMO

Beyond interacting with neighboring plants, crop performance is affected by the microbiome that includes pathogens and mutualists. While the importance of plant-plant interactions in explaining overyielding in intercropping is well known, the role of the microbiome, in particular how the presence of microbes from heterospecific crop species inhibit pathogens of the focal plants in affecting yield remains hardly explored. Here we performed both field samplings and pot experiments to investigate the microbial interactions in the maize/faba bean intercropping system, with the focus on the inhibition of Fusarium oxysporum in faba bean plants. Long-term field measurements show that maize/faba bean intercropping increased crop yield, reduced the gene copies of F. oxysporum by 30-84% and increased bacterial richness and Shannon index compared to monocropping. Bacterial networks in intercropping were more stable with more hub nodes than the respective monocultures. Furthermore, the observed changes of whole microbial communities were aligned with differences in the number of siderophore-producing rhizobacteria in maize and pathogen abundances in faba bean. Maize possessed 71% more siderophore-producing rhizobacteria and 33% more synthetases genes abundance of nonribosomal peptides, especially pyochelin, relative to faba bean. This was further evidenced by the increased numbers of siderophore-producing bacteria and decreased gene copies of F. oxysporum in the rhizosphere of intercropped faba bean. Four bacteria (Pseudomonas spp. B004 and B021, Bacillus spp. B005 and B208) from 95 isolates antagonized F. oxysporum f. sp. fabae. In particular, B005, which represented a hub node in the networks, showed particularly high siderophore-producing capabilities. Intercropping increased overall bacterial diversity and network complexity and the abundance of siderophore-producing bacteria, leading to facilitated pathogen suppression and increased resistance of faba bean to F. oxysporum. This study has great agronomic implications as microorganisms might be specifically targeted to optimize intercropping practices in the future.

13.
Front Microbiol ; 13: 953340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992700

RESUMO

Rhizosphere microorganisms are closely associated with phosphorus (P) uptake in plants and are considered potential agents to mitigate P shortage. However, the mechanisms of rhizospheric microbial community assembly under P deficiency have yet to be elucidated. In this study, bacterial and fungal communities in rice rhizosphere and their P mobilization potential under high (+P) and low (-P) concentrations of P were investigated. Bacterial and fungal community structures were significantly different between -P and +P treatments. And both bacterial and fungal P-mobilizing taxa were enriched in-P treatment; however, the proportion of P-mobilizing agents in the fungal community was markedly greater than that in the bacterial community. A culture experiment confirmed that microbial phosphate solubilizing capacity was significantly higher in -P treatment compared with that in +P treatment. -P treatment lowered bacterial diversity in rice rhizosphere but increased fungal diversity. Further analysis demonstrated that the contribution of deterministic processes in governing bacterial community assembly was strengthened under P deficiency but was largely weakened in shaping the fungal community. These results highlighted that enriching P-mobilizing microbes in the rhizosphere is a vital way for rice to cope with P deficiency, and that fungi contribute considerably to P mobilization in rice rhizosphere. Findings from the study provide novel insights into the assembly of the rhizosphere microbiome under P deficiency and this will facilitate the development of rhizosphere microbial regulation strategies to increase nutrient uptake in plants.

14.
Front Bioeng Biotechnol ; 10: 775058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387302

RESUMO

Rhodotorula mucilaginosa (Rho) can secrete large amounts of extracellular polymeric substances (EPS) to resist lead (Pb) toxicity. Phosphate is an effective material for the remediation of Pb. This study explored the Pb remediation by the combination of Rho and different types of phosphate in water. To do so, four phosphates, namely, ferric phosphate (FePO4, Fe-P), aluminum phosphate (AlPO4, Al-P), calcium phosphate [Ca3(PO4)2, Ca-P], and phosphogypsum (PG) were employed along with Rho. Compared with Rho application, the addition of phosphate significantly promoted the secretion of EPS by Rho (21-25 vs 16 mg). The formed EPS-Pb contributes to the Pb immobilization in the combination of Rho and phosphate. After 6 days of incubation, Rho + phosphate treatments immobilized over 98% of Pb cations, which is significantly higher than Rho treatment (94%). Of all Rho + phosphate treatments, Ca-P and PG-amended Rho had higher secretion of EPS, resulting in higher Pb removal. Nevertheless, PG had the highest efficiency for Pb removal compared with other phosphates, which reached 99.9% after 6 days of incubation. Likewise, new Pb minerals, such as pyromorphite and lead sulfate, only appeared in Rho + PG treatment. Altogether, this study concludes on the combined application of Rho and phosphate as an efficient approach to promote Pb remediation, particularly using PG waste.

15.
Nat Plants ; 6(6): 653-660, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32483328

RESUMO

Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16-29% of the land and 19-36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.


Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal , China , Grão Comestível/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
17.
Nature ; 555(7696): 363-366, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513654

RESUMO

Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Eficiência Organizacional , Fazendeiros , China , Técnicas de Apoio para a Decisão , Grão Comestível/crescimento & desenvolvimento , Política Ambiental , Fertilizantes/estatística & dados numéricos , Abastecimento de Alimentos/métodos , Efeito Estufa , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
18.
J Exp Bot ; 67(17): 4935-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27489235

RESUMO

Over the past five decades, Chinese grain production has increased 4-fold, from 110 Mt in 1961 to 557 Mt in 2014, with less than 9% of the world's arable land feeding 22% of the world's population, indicating a substantial contribution to global food security. However, compared with developed economies, such as the USA and the European Union, more than half of the increased crop production in China can be attributed to a rapid increase in the consumption of chemicals, particularly fertilizers. Excessive fertilization has caused low nutrient use efficiency and high environmental costs in grain production. We analysed the key requirements underpinning increased sustainability of crop production in China, as follows: (i) enhance nutrient use efficiency and reduce nutrient losses by fertilizing roots not soil to maximize root/rhizosphere efficiency with innovative root zone nutrient management; (ii) improve crop productivity and resource use efficiency by matching the best agronomic management practices with crop improvement; and (iii) promote technology transfer of the root zone nutrient management to achieve the target of high yields and high efficiency with low environmental risks on a broad scale. Coordinating grain production and environmental protection by increasing the sustainability of nutrient use will be a key step in achieving sustainable crop production in Chinese agriculture.


Assuntos
Conservação dos Recursos Naturais , Produção Agrícola , Estado Nutricional , China , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Produção Agrícola/métodos , Meio Ambiente , Abastecimento de Alimentos , Humanos
19.
New Phytol ; 209(2): 823-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26313736

RESUMO

Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability.


Assuntos
Fósforo/farmacocinética , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Vicia faba/fisiologia , Zea mays/metabolismo , Agricultura/métodos , Disponibilidade Biológica , Fósforo/metabolismo , Exsudatos de Plantas/metabolismo , Exsudatos de Plantas/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
20.
PLoS One ; 10(11): e0141725, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540207

RESUMO

Wheat (Triticum aestivum L.)/maize (Zea mays L.)/soybean (Glycine max L.) relay strip intercropping (W/M/S) system is commonly used by the smallholders in the Southwest of China. However, little known is how to manage phosphorus (P) to enhance P use efficiency of the W/M/S system and to mitigate P leaching that is a major source of pollution. Field experiments were carried out in 2011, 2012, and 2013 to test the impact of five P application rates on yield and P use efficiency of the W/M/S system. The study measured grain yield, shoot P uptake, apparent P recovery efficiency (PRE) and soil P content. A linear-plateau model was used to determine the critical P rate that maximizes gains in the indexes of system productivity. The results show that increase in P application rates aggrandized shoot P uptake and crops yields at threshold rates of 70 and 71.5 kg P ha-1 respectively. With P application rates increasing, the W/M/S system decreased the PRE from 35.9% to 12.3% averaged over the three years. A rational P application rate, 72 kg P ha-1, or an appropriate soil Olsen-P level, 19.1 mg kg-1, drives the W/M/S system to maximize total grain yield while minimizing P surplus, as a result of the PRE up to 28.0%. We conclude that rational P application is an important approach for relay intercropping to produce high yield while mitigating P pollution and the rational P application-based integrated P fertilizer management is vital for sustainable intensification of agriculture in the Southwest of China.


Assuntos
Glycine max/metabolismo , Fósforo/química , Fósforo/metabolismo , Solo/química , Triticum/metabolismo , Zea mays/metabolismo , Agricultura/métodos , China , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Grão Comestível/química , Grão Comestível/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Glycine max/química , Triticum/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA