Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Brain ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315766

RESUMO

Machado-Joseph disease, also known as Spinocerebellar ataxia type 3 (MJD/SCA3), is a fatal autosomal dominant hereditary ataxia characterized by cerebellar ataxia resulting from the abnormal expansion of CAG repeats in exon 10 of the ATXN3 gene. Presently, there is no effective treatment for SCA3. Small interfering RNAs (siRNAs) are emerging as potential therapeutic strategies to specifically target the disease-causing mutant ATXN3 (mATXN3) protein. However, the delivery efficiency of siRNAs remains a major obstacle for clinical application, particularly in brain disorders. This study aimed to develop a synthetic biology strategy to reprogram the host liver as a tissue chassis to induce and deliver in vivo self-assembled siRNAs (IVSA-siRNAs) to target the ATXN3 gene. A synthetic construct directed by a cytomegalovirus promoter was designed to encode a neuron-targeting rabies virus glycoprotein tag and mATXN3-siRNA. After intravenous injection, the synthetic construct was taken up by mouse livers, which were then reprogrammed to enable the self-assembly, production, and secretion of small extracellular vesicles (sEVs) encapsulating mATXN3-siRNA. The sEV-encapsulated mATXN3-siRNA was further transported through the endogenous circulating system of sEVs, crossing the blood-brain barrier and reaching the cerebellar cortex and spinal cerebellar tract, where they silenced the ATXN3 gene. Treatment with the synthetic construct for 8 or 12 weeks led to significant improvements in motor balance ability and reduction of cerebellar atrophy in YACMJD84.2 transgenic mice. The number of Purkinje cells in the cerebellar cortex was significantly increased, and the loss of myelin basic protein was reduced. Moreover, the quantity of neurotoxic nuclear inclusion bodies and the expression of glial fibrillary acidic protein, which promotes neuroinflammation in activated astrocytes, were decreased significantly. The synthetic construct facilitated the generation and delivery of IVSA-siRNA to the cerebellar cortex and spinal cerebellar tract, thereby inhibiting the expression of mATXN3 protein. This treatment successfully addressed motor impairments, alleviated neuropathological phenotypes, and mitigated neuroinflammation in YACMJD84.2 transgenic mice. Our strategy effectively overcomes the primary challenges associated with siRNA therapy for cerebellar ataxia, offering a promising avenue for future clinical treatments.

2.
Eur J Pharmacol ; 983: 176824, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39265882

RESUMO

Intimal hyperplasia (IH) is an innegligible issue for patients undergoing interventional therapy. The proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF-BB) are critical events in the development of IH. While the exact mechanism and effective target for IH needs further investigation. Metabolic disorders of arachidonic acid (ARA) are involved in the occurrence and progression of various diseases. In this study, we found that the expressions of soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) were significantly increased in the VSMCs during balloon injury-induced IH. Then, we employed a COX-2/sEH dual inhibitor PTUPB to increase the concentration of epoxyeicosatrienoic acids (EETs) while prevent the release of pro-inflammatory prostaglandins. Results showed that PTUPB treatment significantly reduced neointimal thickening induced by balloon injury in rats in vivo and inhibited PDGF-BB-induced proliferation and migration of VSMCs in vitro. Our results showed that PTUPB may reverse the phenotypic transition of VSMCs by inhibiting Pttg1 expression. In conclusion, we found that the dysfunction of ARA metabolism in VSMCs contributes to IH, and the COX-2/sEH dual inhibitor PTUPB attenuates IH progression by reversing the phenotypic switch in VSMC through the Sirt1/Pttg1 pathway.


Assuntos
Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2 , Epóxido Hidrolases , Hiperplasia , Músculo Liso Vascular , Miócitos de Músculo Liso , Ratos Sprague-Dawley , Animais , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Masculino , Ratos , Ciclo-Oxigenase 2/metabolismo , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Movimento Celular/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Túnica Íntima/patologia , Túnica Íntima/metabolismo , Túnica Íntima/efeitos dos fármacos , Becaplermina/farmacologia , Neointima/patologia , Neointima/metabolismo , Neointima/tratamento farmacológico , Doenças Metabólicas/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/patologia
3.
Front Pharmacol ; 15: 1448319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268473

RESUMO

Objective: Addressing the rising prevalence of pain disorders and limitations of current analgesics, our study explores repurposing antihypertensive drugs for pain management, inspired by the link between hypertension and pain. We leverage a drug-target Mendelian Randomization (MR) approach to explore their dual benefits and establish causal connections. Methods: A comprehensive compilation of antihypertensive drug classes was undertaken through British National Formulary, with their target genes identified using the DrugBank database. Relevant single nucleotide polymorphisms (SNPs) associated with these targets were selected from published genomic studies on systolic blood pressure (SBP) as genetic instruments. These SNPs were validated through MR against acute coronary artery disease (CAD) to ensure genes not linked to CAD were excluded from acting as proxies for antihypertensive drugs. An MR analysis of 29 pain-related outcomes was conducted using the FinnGen R10 database employing the selected and validated genetic instruments. We utilized the Inverse Variance Weighted (IVW) method for primary analysis, applying Bonferroni correction to control type I error. IVW's multiplicative random effects (MRE) addressed heterogeneity, and MR-PRESSO managed pleiotropy, ensuring accurate causal inference. Results: Our analysis differentiates strong and suggestive evidence in linking antihypertensive drugs to pain disorder risks. Strong evidence was found for adrenergic neuron blockers increasing migraine without aura risk, loop diuretics reducing panniculitis, and vasodilator antihypertensives lowering limb pain risk. Suggestive evidence suggests alpha-adrenoceptor blockers might increase migraine risk, while beta-adrenoceptor blockers could lower radiculopathy risk. Adrenergic neuron blockers also show a potential protective effect against coxarthrosis (hip osteoarthritis) and increased femgenpain risk (pain and other conditions related to female genital organs and menstrual cycle). Additionally, suggestive links were found between vasodilator antihypertensives and reduced radiculopathy risk, and both alpha-adrenoceptor blockers and renin inhibitors possibly decreasing dorsalgianas risk (unspecified dorsalgia). These findings highlight the intricate effects of antihypertensive drugs on pain disorders, underlining the need for further research. Conclusion: The findings indicate that antihypertensive medications may exert varied effects on pain management, suggesting a repurposing potential for treating specific pain disorders. The results advocate for further research to confirm these associations and to explore underlying mechanisms, to optimize pain management practices.

4.
Int J Biol Sci ; 20(12): 4713-4730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309425

RESUMO

Extensive loss of alveolar epithelial cells (AECs) undergoing necroptosis is a crucial mechanism of acute lung injury (ALI), but its triggering mechanism needs to be thoroughly investigated. Neutrophil extracellular traps (NETs) play a significant role in ALI. However, the effect of NETs on AECs' death has not been clarified. Our study found that intratracheal instillation of NETs disrupted lung tissue structure, suggesting that NETs could induce ALI in mice. Moreover, we observed that NETs could trigger necroptosis of AECs in vivo and in vitro. The phosphorylation levels of RIPK3 and MLKL were increased in MLE12 cells after NETs treatment (P < 0.05). Mechanistically, NETs taken up by AECs through endocytosis activated the cGAS-STING pathway and triggered AECs necroptosis. The expression of cGAS, STING, TBK1 and IRF3 were increased in MLE12 cells treated with NETs (P < 0.05). Furthermore, the cGAS inhibitor RU.521 inhibited NETs-triggered AECs necroptosis and alleviated the pulmonary damage induced by NETs in mice. In conclusion, our study demonstrates that NETs taken up by AECs via endocytosis can activate the cGAS-STING pathway and trigger AECs necroptosis to promote ALI in mice. Our findings indicate that targeting the NETs/cGAS-STING/necroptosis pathway in AECs is an effective strategy for treating ALI.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Armadilhas Extracelulares , Proteínas de Membrana , Necroptose , Nucleotidiltransferases , Animais , Armadilhas Extracelulares/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Camundongos , Nucleotidiltransferases/metabolismo , Células Epiteliais Alveolares/metabolismo , Proteínas de Membrana/metabolismo , Masculino , Transdução de Sinais , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
5.
Int J Biol Macromol ; 280(Pt 1): 135351, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270890

RESUMO

Pulmonary fibrosis (PF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia, occurring primarily in older adults with poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. However, the molecular mechanisms regulating AEC senescence in PF are incompletely understood. Herein, we provided evidence to support the function of Krüppel-like factor 14 (KLF14), a novel Krüppel-like transcription factor, in the regulation of AEC senescence during PF. We confirmed that the expression of KLF14 was up-regulated in PF patients and mice treated with bleomycin (BLM). KLF14 knockdown resulted in more pronounced structural disruption of the lung tissue and swelling of the alveolar septum, which led to significantly increased mortality in BLM-induced PF mice. Mechanistically, RNA-seq analysis indicated that KLF14 decreased the senescence of AECs by inhibiting endoplasmic reticulum (ER) stress. Furthermore, the pharmacological activation of KLF14 conferred protection against PF in mice. In conclusion, our findings reveal a protective role for KLF14 in preventing AECs from senescence and shed light on the development of KLF14-targeted therapeutics for PF.

6.
J Cell Physiol ; : e31442, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319990

RESUMO

The apoptosis resistance of myofibroblasts is a hallmark in the irreversible progression of pulmonary fibrosis (PF). While the underlying molecular mechanism remains elusive. In this study, we unveiled a previously unrecognized mechanism underlying myofibroblast apoptosis resistance during PF. Our investigation revealed heightened expression of mesenchyme homeobox 1 (MEOX1) in the lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin-induced PF mice. Silencing MEOX1 significantly attenuated PF progression in mice. In vitro, we found a notable increase in MEOX1 expression in transforming growth factor-ß1 (TGF-ß1)-induced myofibroblasts. Silencing MEOX1 enhanced apoptosis of myofibroblasts. Mechanistically, we identified G-protein signaling pathway regulatory factor 4 (RGS4) as a critical downstream target of MEOX1, as predicted by bioinformatics analysis. MEOX1 enhanced apoptosis resistance by upregulating RGS4 expression in myofibroblasts. In conclusion, our study highlights MEOX1 as a promising therapeutic target for protecting against PF by modulating myofibroblast apoptosis resistance.

8.
Mol Med ; 30(1): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898476

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Assuntos
Asma , Autofagia , Células Epiteliais , Transição Epitelial-Mesenquimal , Proteína Wnt-5a , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Masculino , Linhagem Celular , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto
9.
Nat Aging ; 4(6): 814-838, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627524

RESUMO

Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.


Assuntos
Envelhecimento , Metabolismo Energético , Vesículas Extracelulares , Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Vesículas Extracelulares/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Camundongos , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteômica/métodos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino
10.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674133

RESUMO

The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Polimorfismo de Nucleotídeo Único , RNA-Seq , Camellia sinensis/genética , Camellia sinensis/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Mutação , Fenótipo , Lignina/metabolismo , Lignina/biossíntese , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Int J Biol Sci ; 20(5): 1927-1946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481801

RESUMO

The activation of NLRP3 inflammasome in microglia is critical for neuroinflammation during postoperative cognitive dysfunction (POCD) induced by sevoflurane. However, the molecular mechanism by which sevoflurane activates the NLRP3 inflammasome in microglia remains unclear. The cGAS-STING pathway is an evolutionarily conserved inflammatory defense mechanism. The role of the cGAS-STING pathway in sevoflurane-induced NLRP3 inflammasome-dependent neuroinflammation and the underlying mechanisms require further investigation. We found that prolonged anesthesia with sevoflurane induced cognitive dysfunction and triggered the neuroinflammation characterized by the activation of NLRP3 inflammasome in vivo. Interestingly, the cGAS-STING pathway was activated in the hippocampus of mice receiving sevoflurane. While the blockade of cGAS with RU.521 attenuated cognitive dysfunction and NLRP3 inflammasome activation in mice. In vitro, we found that sevoflurane treatment significantly activated the cGAS-STING pathway in microglia, while RU.521 pre-treatment robustly inhibited sevoflurane-induced NLRP3 inflammasome activation. Mechanistically, sevoflurane-induced mitochondrial fission in microglia and released mitochondrial DNA (mtDNA) into the cytoplasm, which could be abolished with Mdivi-1. Blocking the mtDNA release via the mPTP-VDAC channel inhibitor attenuated sevoflurane-induced mtDNA cytosolic escape and reduced cGAS-STING pathway activation in microglia, finally inhibiting the NLRP3 inflammasome activation. Therefore, regulating neuroinflammation by targeting the cGAS-STING pathway may provide a novel therapeutic target for POCD.


Assuntos
Inflamassomos , Complicações Cognitivas Pós-Operatórias , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , DNA Mitocondrial/metabolismo , Sevoflurano , Doenças Neuroinflamatórias , Nucleotidiltransferases/metabolismo
13.
J Biol Chem ; 300(2): 105654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237680

RESUMO

The mammalian SID-1 transmembrane family members, SIDT1 and SIDT2, are multipass transmembrane proteins that mediate the cellular uptake and intracellular trafficking of nucleic acids, playing important roles in the immune response and tumorigenesis. Previous work has suggested that human SIDT1 and SIDT2 are N-glycosylated, but the precise site-specific N-glycosylation information and its functional contribution remain unclear. In this study, we use high-resolution liquid chromatography tandem mass spectrometry to comprehensively map the N-glycosites and quantify the N-glycosylation profiles of SIDT1 and SIDT2. Further molecular mechanistic probing elucidates the essential role of N-linked glycans in regulating cell surface expression, RNA binding, protein stability, and RNA uptake of SIDT1. Our results provide crucial information about the potential functional impact of N-glycosylation in the regulation of SIDT1-mediated RNA uptake and provide insights into the molecular mechanisms of this promising nucleic acid delivery system with potential implications for therapeutic applications.


Assuntos
Proteínas de Transporte de Nucleotídeos , RNA , Humanos , Transporte Biológico , Glicosilação , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , RNA/metabolismo
14.
J Cell Physiol ; 239(2): e31169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193350

RESUMO

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.


Assuntos
Lesão Pulmonar Aguda , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Células Epiteliais Alveolares/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Necroptose , Transdução de Sinais
15.
J Affect Disord ; 350: 102-109, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199422

RESUMO

BACKGROUND: Antidepressant response in adults with major depressive disorder (MDD) is probably influenced by personality dimensions. However, personality dimensions in depression and their association with antidepressant treatment in adolescents are relatively unknown. We sought to investigate whether personality traits (PTs) can influence antidepressant treatment response in adolescents with depression. METHODS: Eighty-two adolescents with MDD who had completed the 8 weeks of treatment with selective serotonin reuptake inhibitors (SSRI) were enrolled. The Revised NEO Five-Factor Inventory (NEO-FFI-R) was used to measure their personality at baseline, and the 17-item Hamilton Depression Rating Scale (HAMD-17) and Children's Depression Rating Scale-Revised (CDRS-R) were used to evaluate depressive symptoms at baseline and 8 weeks. Moreover, logistic regression was performed to investigate the relationship between personality dimensions and antidepressant response. Receiver operating characteristic analyses were employed to determine the accuracy of a PT-based model in predicting the antidepressant response rate. RESULTS: Adolescents with MDD had significantly different PTs at baseline. Multivariable logistic regression analysis showed that extroversion scores were associated with response to antidepressant treatment, the lower the extroversion score, the better the response to antidepressant treatment, after correcting for variables with significant differences and trends or all potential confounding variables. It was also found that the combination of disease duration, extraversion-gregariousness, and agreeableness-trust effectively predicted antidepressant response in adolescents with MDD, with a sensitivity of 79.4 % and specificity of 68.7 %. CONCLUSION: Personality dysfunction in adolescents is associated with MDD. The antidepressant treatment response is influenced by the degree of extroversion in adolescents with MDD.


Assuntos
Transtorno Depressivo Maior , Adulto , Criança , Humanos , Adolescente , Transtorno Depressivo Maior/terapia , Depressão , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Resultado do Tratamento , Personalidade
18.
Clin Chim Acta ; 552: 117672, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995985

RESUMO

BACKGROUND AND AIMS: The potential of urinary-derived extracellular vesicle (uEV) microRNAs (miRNAs) as noninvasive molecular biomarkers for identifying early-stage renal cell carcinoma (RCC) patients is rarely explored. The present study aims to explore the possibility of uEV miRNAs as novel molecular biomarkers for distinguishing early-stage RCC. MATERIALS AND METHODS: uEVs were extracted by ExoQuick-TC™ kit and miRNA concentrations were measured by RT-qPCR. ROC curves and bioinformatics analysis were employed to predict the diagnostic efficacy and regulatory mechanisms of dysregulated miRNAs. RESULTS: Through a multiphase case-control study on uEV miRNAs screening, training, and validation in RCC cells (ACHN, Caki-1) and control cells (HK-2) and in uEVs of 125 RCC patients and 128 age- and sex-matched controls, we successfully identified four uEVs miRNAs (miR-135b-5p, miR-196b-5p, miR-200c-3p, and miR-203a-3p) were significantly and stably upregulated in RCC in vitro and in vivo. When adjusted with estimated glomerular filtration rate (eGFR), the AUC of the three-uEV miRNA panel (miR-135b-5p, miR-200c-3p, and miR-203a-3p) was 0.785 (95 % CI = 0.729-0.842, P < 0.0001) for discriminating RCC patients from controls. Notably, this panel exhibited similar performance in distinguishing early-stage (stage Ⅰ) RCC patients, with an AUC of 0.786 (95 %CI = 0.727-0.844, P < 0.0001). Bioinformatics analysis predicted that candidate miRNAs were involved in cancer progressing. CONCLUSION: Our study identified a four uEV miRNAs panel (miR-135b-5p, miR-196b-5p, miR-200c-3p, and miR-203a-3p) may serve as an auxiliary noninvasive indication of early-stage RCC.


Assuntos
Carcinoma de Células Renais , Vesículas Extracelulares , Neoplasias Renais , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Estudos de Casos e Controles , Biomarcadores Tumorais/genética , Biomarcadores , Vesículas Extracelulares/genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética
19.
Lab Invest ; 104(2): 100307, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104865

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.


Assuntos
Mitocôndrias , Doença Pulmonar Obstrutiva Crônica , Humanos , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Envelhecimento , Mitofagia
20.
Trends Endocrinol Metab ; 35(3): 201-218, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38160178

RESUMO

Extracellular noncoding RNAs (ncRNAs) have crucial roles in intercellular communications. The process of ncRNA secretion is highly regulated, with specific ncRNA profiles produced under different physiological and pathological circumstances. These ncRNAs are transported primarily via extracellular vesicles (EVs) from their origin cells to target cells, utilising both endocrine and paracrine pathways. The intercellular impacts of extracellular ncRNAs are essential for maintaining homeostasis and the pathogenesis of various diseases. Given the unique aspects of extracellular ncRNAs, here we propose the term 'RNAkine' to describe these recently identified secreted factors. We explore their roles as intercellular modulators, particularly in their ability to regulate metabolism and influence tumorigenesis, highlighting their definition and importance as a distinct class of secreted factors.


Assuntos
Vesículas Extracelulares , RNA não Traduzido , Humanos , RNA não Traduzido/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Carcinogênese/metabolismo , Transporte Biológico , Transformação Celular Neoplásica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA