Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Adv Sci (Weinh) ; : e2407113, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39454110

RESUMO

Super enhancers (SEs) are large clusters of transcriptional enhancers driving the expression of genes crucial for defining cell identity. In cancer, tumor-specific SEs activate key oncogenes, leading to tumorigenesis. Identifying SE-driven oncogenes in tumors and understanding their functional mechanisms is of significant importance. In this study, a previously unreported SE region is identified in T-cell acute lymphoblastic leukemia (T-ALL) patient samples and cell lines. This SE activates the expression of interferon regulatory factor 2 binding protein 2 (IRF2BP2) and is regulated by T-ALL master transcription factors (TFs) such as ETS transcription factor ERG (ERG), E74 like ETS transcription factor 1 (ELF1), and ETS proto-oncogene 1, transcription factor (ETS1). Hematopoietic system-specific IRF2BP2 conditional knockout mice is generated and showed that IRF2BP2 has minimal impact on normal T cell development. However, in vitro and in vivo experiments demonstrated that IRF2BP2 is crucial for T-ALL cell growth and survival. Loss of IRF2BP2 affects the MYC and E2F pathways in T-ALL cells. Cleavage under targets and tagmentation (CUT&Tag) assays and immunoprecipitation revealed that IRF2BP2 cooperates with the master TFs of T-ALL cells, targeting the enhancer of the T-ALL susceptibility gene recombination activating 1 (RAG1) and modulating its expression. These findings provide new insights into the regulatory network within T-ALL cells, identifying potential new targets for therapeutic intervention.

2.
Angew Chem Int Ed Engl ; : e202415445, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39410669

RESUMO

Converting greenhouse gases into valuable products has become a promising approach for achieving a carbon-neutral economy and sustainable development. However, the conversion efficiency depends on the energy yield of the substrate. In this study, we developed an electro-biocatalytic system by integrating electrochemical and microbial processes to upcycle CO2 into a valuable product (ectoine) using renewable energy. This system initiates the electrocatalytic reduction of CO2 to methane, an energy-dense molecule, which then serves as an electrofuel to energize the growth of an engineered methanotrophic cell factory for ectoine biosynthesis. The scalability of this system was demonstrated using an array of ten 25 cm2 electrochemical cells equipped with a high-performance carbon-supported isolated copper catalyst. The system consistently generated methane at the cathode under a total partial current of approximately -37 A (~175 mmolCH4 h-1) and O2 at the anode under a total partial current of approximately 62 A (~583 mmolO2 h-1). This output met the requirements of a 3-L bioreactor, even at maximum CH4 and O2 consumption, resulting in the high-yield conversion of CO2 to ectoine (1146.9 mg L-1). This work underscores the potential of electrifying the biosynthesis of valuable products from CO2, providing a sustainable avenue for biomanufacturing and energy storage.

3.
Bioresour Technol ; 412: 131415, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39233184

RESUMO

Bacterioruberin is widely used in medicine, food, and cosmetics owing to its prominent characteristics of antioxidants and bioactivities. Bioconversion of methane into bacterioruberin is a promising way to address biomanufacturing substrate costs and greenhouse gas emissions but has not been achieved yet. Herein, this study aimed to upcycle methane to bacterioruberin by microbial consortia. The microbial consortia consist of Methylomonas and Methylophilus capable of synthesizing carotenoids from methane was firstly enriched from paddy soil. Through this microbial community, methane was successfully converted into C50 bacterioruberin for the first time. The bioconversion process was then optimized by the response surface methodology. Finally, the methane-derived bacterioruberin reached a record yield of 280.88 ± 2.94 µg/g dry cell weight. This study presents a cost-effective and eco-friendly approach for producing long-chain carotenoids from methane, offering a significant advancement in the direct conversion of greenhouse gases into value-added products.


Assuntos
Carotenoides , Metano , Consórcios Microbianos , Microbiologia do Solo , Metano/metabolismo , Carotenoides/metabolismo , Consórcios Microbianos/fisiologia , Solo/química
4.
J Agric Food Chem ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269285

RESUMO

Methane, a byproduct of agricultural activities, has shown potential as a nonedible substrate for biomanufacturing. The production of succinate by a methanotrophic bacterium utilizing methane presents an innovative route for the sustainable synthesis of chemicals. In this study, Methylotuvimicrobium buryatense 5GB1S was genetically modified through the reconstruction of an artificial serine cycle to enable the bioconversion of both methane and CO2 into succinate. The 13C labeling analysis confirmed the CO2 fixing in M. buryatense 5GB1S, leading to a 46% improvement in carbon conversion efficiency and a 107% increase in succinate production compared to the wild-type strain. The transcriptome data on carbon metabolisms was assessed to guide future optimizations for strengthening the overall carbon flux from methane to succinate. Finally, the maximum succinate titer of 299.36 mg/L was achieved under oxygen-limited conditions in 3 L bioreactors, which resulted in the volumetric productivity of 199.60 mg/L/day, representing a 23-fold enhancement compared to the wild-type strain. This study offers a new strategy for upcycling greenhouse gases into succinate in a sustainable manner through methanotrophic-based biomanufacturing.

5.
Respir Res ; 25(1): 253, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902698

RESUMO

BACKGROUND: There is a desperate for the identification of more accurate and efficient biomarkers for ICI responses in patients with SCLC. METHODS: The data of our study was obtained from IMpower133 study. A total of 202 patients with SCLC received the treatment of placebo plus carboplatin plus etoposide (EC) while a total of 201 patients with SCLC received the treatment of atezolizumab plus EC. Overall survival (OS) was compared using Kaplan Meier analyses. Univariate and multivariate Cox regression analysis were used to determine independent prognostic variables affecting OS in patients with SCLC. RESULTS: We have demonstrated that a higher TMB adjusted by a lower neutrophil-to-lymphocyte ratio (NLR) is significantly correlated with improved OS, in patients with SCLC subject to either atezolizumab or placebo (P = 0.001 for atezolizumab and P = 0.034 for placebo). Moreover, Cox model showed that TMB < 10 mut/Mb adjusted by NLR ≥ median was an independent factor of OS for atezolizumab-treated SCLC patients (hazard ratio [HR], 2.82; 95% confidence interval; 1.52-5.24; P = 0.001). Both univariate and multivariate cox regression analysis showed that for patients with SCLC harboring low NLR and high TMB, survival is significantly longer in those treated with atezolizumab than those treated with placebo. Survival benefit is significantly higher in atezolizumab-treated patients with SCLC than those treated with placebo (P = 0.018 for TMB cutoff = 10 mut/Mb, P = 0.034 for TMB cutoff = 16 mut/Mb). CONCLUSION: Our findings provide a promising insight into the utility of NLR-adjusted TMB in the prognosis and immune responses in patients with SCLC.


Assuntos
Anticorpos Monoclonais Humanizados , Biomarcadores Tumorais , Neoplasias Pulmonares , Linfócitos , Neutrófilos , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/sangue , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Feminino , Linfócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Mutação , Estadiamento de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Contagem de Linfócitos , Método Duplo-Cego
6.
J Pain Res ; 17: 1413-1422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618294

RESUMO

Purpose: This study aimed to assess the current status of clinical practice of refractory cancer pain (RCP) among a sample of physicians specializing in cancer pain management in Shanghai. Methods: From 2019 to 2021, a questionnaire survey was conducted among physicians engaged in diagnosis and treatment of cancer pain through the questionnaire WJX network platform in Shanghai, China. Results: A total of 238 responses participated in the survey. This survey reports physicians' understanding and incidence rate of breakthrough cancer pain (BTCP). The choice of analgesics and satisfaction of analgesic effect were investigated. We also investigated doctors' knowledge of the diagnostic criteria for RCP and their tendency to choose analgesics. Oral immediate-release morphine and intravenous or subcutaneous morphine injection have been the common treatment approach for transient cancer pain exacerbations. The main barriers to pain management are lack of standardized treatment methods for RCP, lack of knowledge related to RCP, and single drug dosage form. Doctors believe the most necessary measures to improve the current situation of poor cancer pain control include improving medical staff's understanding and treatment techniques for RCP, updating treatment techniques and methods, and improving the configuration of drug types in medical institutions. Clinicians expect to improve understanding and treatment techniques through systematic training. Conclusion: Despite multiple available analgesic measures, the treatment of RCP remains challenging. Improving the understanding of medical staff towards RCP, improving treatment techniques, and increasing the accessibility of multiple drug types are important ways to improve the satisfaction of cancer pain management in the future.

7.
Adv Sci (Weinh) ; 11(18): e2305724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483933

RESUMO

Prostate cancer (PCa) is an extensive heterogeneous disease with a complex cellular ecosystem in the tumor microenvironment (TME). However, the manner in which heterogeneity is shaped by tumors and stromal cells, or vice versa, remains poorly understood. In this study, single-cell RNA sequencing, spatial transcriptomics, and bulk ATAC-sequence are integrated from a series of patients with PCa and healthy controls. A stemness subset of club cells marked with SOX9highARlow expression is identified, which is markedly enriched after neoadjuvant androgen-deprivation therapy (ADT). Furthermore, a subset of CD8+CXCR6+ T cells that function as effector T cells is markedly reduced in patients with malignant PCa. For spatial transcriptome analysis, machine learning and computational intelligence are comprehensively utilized to identify the cellular diversity of prostate cancer cells and cell-cell communication in situ. Macrophage and neutrophil state transitions along the trajectory of cancer progression are also examined. Finally, the immunosuppressive microenvironment in advanced PCa is found to be associated with the infiltration of regulatory T cells (Tregs), potentially induced by an FAP+ fibroblast subset. In summary, the cellular heterogeneity is delineated in the stage-specific PCa microenvironment at single-cell resolution, uncovering their reciprocal crosstalk with disease progression, which can be helpful in promoting PCa diagnosis and therapy.


Assuntos
Neoplasias da Próstata , Análise de Célula Única , Microambiente Tumoral , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Perfilação da Expressão Gênica/métodos , Multiômica
8.
Oncologist ; 29(3): e392-e401, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37706531

RESUMO

BACKGROUND: To date, no study has systematically explored the potential role of serum metabolites and lipids in the diagnosis of small cell lung cancer (SCLC). Therefore, we aimed to conduct a case-cohort study that included 191 cases of SCLC, 91 patients with lung adenocarcinoma, 82 patients with squamous cell carcinoma, and 97 healthy controls. METHODS: Metabolomics and lipidomics were applied to analyze different metabolites and lipids in the serum of these patients. The SCLC diagnosis model (d-model) was constructed using an integrated machine learning technology and a training cohort (n = 323) and was validated in a testing cohort (n=138). RESULTS: Eight metabolites, including 1-mristoyl-sn-glycero-3-phosphocholine, 16b-hydroxyestradiol, 3-phosphoserine, cholesteryl sulfate, D-lyxose, dioctyl phthalate, DL-lactate and Leu-Phe, were successfully selected to distinguish SCLC from controls. The d-model was constructed based on these 8 metabolites and showed improved diagnostic performance for SCLC, with the area under curve (AUC) of 0.933 in the training cohort and 0.922 in the testing cohort. Importantly, the d-model still had an excellent diagnostic performance after adjusting the stage and related clinical variables and, combined with the progastrin-releasing peptide (ProGRP), showed the best diagnostic performance with 0.975 of AUC for limited-stage patients. CONCLUSION: This study is the first to analyze the difference between metabolomics and lipidomics and to construct a d-model to detect SCLC using integrated machine learning. This study may be of great significance for the screening and early diagnosis of SCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Biomarcadores Tumorais , Lipídeos
9.
Angew Chem Int Ed Engl ; 63(2): e202313264, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37985401

RESUMO

Mg-CO2 battery has been considered as an ideal system for energy conversion and CO2 fixation. However, its practical application is significantly limited by the poor reversibility and sluggish kinetics of CO2 cathode and Mg anode. Here, a new amine mediated chemistry strategy is proposed to realize a highly reversible and high-rate Mg-CO2 battery in conventional electrolyte. Judiciously combined experimental characterization and theoretical computation unveiled that the introduced amine could simultaneously modify the reactant state of CO2 and Mg2+ to accelerate CO2 cathodic reactions on the thermodynamic-kinetic levels and facilitate the formation of Mg2+ -conductive solid-electrolyte interphase (SEI) to enable highly reversible Mg anode. As a result, the Mg-CO2 battery exhibits boosted stable cyclability (70 cycles, more than 400 h at 200 mA g-1 ) and high-rate capability (from 100 to 2000 mA g-1 with 1.5 V overpotential) even at -15 °C. This work opens a newly promising avenue for advanced metal-CO2 batteries.

10.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189005, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37913941

RESUMO

As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Adenosina/uso terapêutico , Adenosina/metabolismo , Imunoterapia , Linfócitos T/metabolismo , Microambiente Tumoral
11.
Nutrients ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836514

RESUMO

Constipation is currently one of the most common gastrointestinal disorders, and its causes are diverse. Multi-strain probiotics are often considered a more effective treatment than single-strain probiotics. In this study, a constipation model was constructed using loperamide hydrochloride to evaluate the ability of a multi-strain probiotic combination of four different ratios of Bifidobacterium and Lactobacillus to regulate intestinal flora, relieve constipation, and explore the initial mechanism in mice. After four weeks of probiotic intervention, BM1, BM2, and PB2 effectively relieved constipation; however, the pathways involved were different. The Bifidobacteria-dominated formulations BM1 and BM2 mainly changed the composition and structure of the intestinal flora and significantly decreased the relative abundance of Tyzzerella, Enterorhabdus, Faecalibaculum, Gordonibacter, and Mucispirillum in stool; increased the relative abundance of Parabacteroides and the content of short-chain fatty acids (SCFAs) in stool; restored motilin (MTL) and vasoactive intestinal peptide (VIP) levels; and downregulated interleukin 6 (IL-6) and IL-8 levels in serum. This repaired the inflammatory response caused by constipation. Finally, it promoted peristalsis of the gastrointestinal tract, increasing stool water content, and relieving constipation. While Lactobacillus-dominated formula PB2 mainly restored the levels of serum neurotransmitters (MTL, SP (substance P), VIP and PYY (Peptide YY)) and inflammatory factors (IL-1, IL-6 and IL-8), it significantly decreased the relative abundance of Tyzzerella, Enterorhabdus, Faecalibaculum, Gordonibacter and Mucispirillum in stool; it then increased acetic acid content, thereby reducing the level of inflammation and changing stool properties and gastrointestinal motility.


Assuntos
Gastroenteropatias , Probióticos , Animais , Camundongos , Loperamida/efeitos adversos , Lactobacillus , Bifidobacterium , Interleucina-6 , Interleucina-8 , Constipação Intestinal/microbiologia , Probióticos/uso terapêutico
13.
J Colloid Interface Sci ; 652(Pt B): 1764-1774, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678081

RESUMO

Ammonia has been emerging as a sustainable and environmentally friendly fuel. However, direct electrochemical ammonia oxidation reaction (AOR) in low-temperature fuel cells seriously suffers from high overpotential and deficient durability. Herein, rhombic dodecahedron nanoframe of platinum iridium copper (PtIrCu) with high-index faceted hyperbranched nanodendrites (RDNF-HNDs) was developed using a one-step self-etching solvothermal method. The framework structure with the high-index facets enables the PtIrCu nanocrystals to expose more effective active sites. They exhibit an ultra-low onset potential of 0.33 V vs. RHE and high mass activity of 26.1 A gPtIr-1 at 0.50 V, which is 140 mV lower and 7.5 times higher than that of commercial Pt/C in the AOR. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy verifies that AOR on PtIrCu RDNF-HNDs prefers to the NHx dimerization pathways, effectively alleviating the poison of Nads and NOx. The theoretical calculation also shows that both introducing Cu atoms into PtIr alloy and increasing the content of Ir in PtIrCu alloy can reduce the reaction energy barrier of electrochemical dehydrogenation from *NH2 to *NH. The specific structure of PtIrCu RDNF-NDs provides a new inspiration to solve the critical issue of electrocatalysts for AOR with low activity and durability.

14.
J Colloid Interface Sci ; 652(Pt B): 1597-1608, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666192

RESUMO

Platinum-based alloy nanowire catalysts demonstrates great promise as electrocatalysts to facilitate the cathodic oxygen reduction reaction (ORR) of proton exchange membrane fuel cells (PEMFCs). However, it is still challenge to further improve the Pt atom utilization of Pt based nanowires featuring inherent structural stability. Herein, a new structure of PtCo nanowire with nanodendrites was developed using CO-assistance solvent thermal method. The dendrite structure with an average length of about 7 nm are characterized by a Pt-rich surface and the high-index facets of {533}, {331} and {311}, and grows from the ultra-fine wire structure with an average diameter of about 3 nm. PtCo nanowires with nanodendrites developed in this work shows outstanding performance for ORR, in which its mass activity of 1.036 A/mgPt is 5.76 times, 1.74 times higher than that of commercial Pt/C (0.180 A/mgPt) and PtCo nanowires without nanodendrites (0.595 A/mgPt), and its mass activity loss is only 18% under the accelerated durability tests (ADTs) for 5k cycles. The significant improvement is attributed to high exposure of active sites induced by the dendrite structure with Pt-rich surface with the high-index facets and Pt-rich surface. This structure may provide a new idea for developing novel 1D Pt based electrocatalysts.

15.
J Transl Med ; 21(1): 468, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452395

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant malignancy with elusive mechanism of pathogenesis and dismal prognosis. Over the past decades, platinum-based chemotherapy has been the backbone treatment for SCLC. However, subsequent chemoresistance after initial effectiveness urges researchers to explore novel therapeutic targets of SCLC. Recent years have witnessed significant improvements in targeted therapy in SCLC. New molecular candidates such as Ataxia telangiectasia and RAD3-related protein (ATR), WEE1, checkpoint kinase 1 (CHK1) and poly-ADP-ribose polymerase (PARP) have shown promising therapeutic utility in SCLC. While immune checkpoint inhibitor (ICI) has emerged as an indispensable treatment modality for SCLC, approaches to boost efficacy and reduce toxicity as well as selection of reliable biomarkers for ICI in SCLC have remained elusive and warrants our further investigation. Given the increasing importance of precision medicine in SCLC, optimal subtyping of SCLC using multi-omics have gradually applied into clinical practice, which may identify more drug targets and better tailor treatment strategies to each individual patient. The present review summarizes recent progress and future directions in SCLC. In addition to the emerging new therapeutics, we also focus on the establishment of predictive model for early detection of SCLC. More importantly, we also propose a multi-dimensional model in the prognosis of SCLC to ultimately attain the goal of accurate treatment of SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/patologia , Imunoterapia/métodos , Biomarcadores , Prognóstico
16.
Scand J Clin Lab Invest ; 83(4): 207-211, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37093849

RESUMO

Acute lymphoblastic leukemia (ALL) is a debilitating illness that easily occurs in adolescents. microRNAs (miRNAs) are potential biomarkers for multiple diseases. This paper was to elaborate on the expression of miR-16-2-3p in childhood ALL and its clinical values on ALL diagnosis and prognosis. First, serum miR-16-2-3p expression in ALL children and healthy volunteers was measured using RT-qPCR. Next, diagnostic potential and prognostic values of miR-16-2-3p on ALL were analyzed through receiver operating characteristic (ROC) curve, Kaplan-Meier survival curve, and multivariate Cox regression analysis, respectively. No significant difference was observed in the clinical baseline data between ALL patients and healthy children. ALL patients showed downregulated serum miR-16-2-3p (0.65 ± 0.27) (p < .01), whose area under the ROC curve was 0.837 with a cut-off value of 0.745 (67.92% sensitivity, 96.94% specificity). ALL patients with higher miR-16-2-3p expression had higher survival rates than those with lower miR-16-2-3p expression. Low miR-16-2-3p expression predicted poor prognosis of ALL patients. After adjusting LDH and lymphomyelocyte proportion (p = 0.003, HR = 0.003, 95%CI = 0.000-0.145), miR-16-2-3p was recognized as an independent prognostic factor for ALL patient survival. Briefly, low serum miR-16-2-3p expression in ALL children could aid ALL diagnosis and predict poor prognosis.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Adolescente , Humanos , Prognóstico , Biomarcadores Tumorais/genética , MicroRNAs/genética , Curva ROC , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
17.
Cancer Lett ; 562: 216182, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37076040

RESUMO

Cancer treatment has been advanced with the advent of immune checkpoint inhibitors (ICIs) exemplified by anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) drugs. Patients have reaped substantial benefit from ICIs in many cancer types. However, few patients benefit from ICIs whereas the vast majority undergoing these treatments do not obtain survival benefit. Even for patients with initial responses, they may encounter drug resistance in their subsequent treatments, which limits the efficacy of ICIs. Therefore, a deepening understanding of drug resistance is critically important for the explorations of approaches to reverse drug resistance and to boost ICI efficacy. In the present review, different mechanisms of ICI resistance have been summarized according to the tumor intrinsic, tumor microenvironment (TME) and host classifications. We further elaborated corresponding strategies to battle against such resistance accordingly, which include targeting defects in antigen presentation, dysregulated interferon-γ (IFN-γ) signaling, neoantigen depletion, upregulation of other T cell checkpoints as well as immunosuppression and exclusion mediated by TME. Moreover, regarding the host, several additional approaches that interfere with diet and gut microbiome have also been described in reversing ICI resistance. Additionally, we provide an overall glimpse into the ongoing clinical trials that utilize these mechanisms to overcome ICI resistance. Finally, we summarize the challenges and opportunities that needs to be addressed in the investigation of ICI resistance mechanisms, with the aim to benefit more patients with cancer.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias/patologia , Imunoterapia , Transdução de Sinais , Antígeno B7-H1 , Microambiente Tumoral
18.
Foods ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107507

RESUMO

(1) Objective: This study aimed to assess the effects of dietary casein phosphopeptide (CPP) supplementation on the egg production performance of late laying hens and the resulting egg quality and eggshell ultrastructure. (2) Methods: A total of 800 laying hens aged 58 weeks were randomly assigned into 5 groups with 8 replicates of 20 hens each. The hens were fed a basal diet supplemented with 0 (control, T1), 0.5 (T2), 1.0 (T3), 1.5 (T4), and 2.0 (T5) g/kg CPP for 9 weeks. (3) Results: Dietary CPP supplementation was found to be beneficial for improving eggshell quality. The spoiled egg rate of the experimental groups was lower than that of the control group (linear and quadratic effect, p < 0.05). The yolk color in the T2, T3, and T4 groups was higher than that in the T1 group (quadratic effect, p < 0.05). The shell thickness in the T4 group was higher than that in the T1 and T2 groups (linear effect, p < 0.05). The shell color in the experimental groups was higher than that in the control group (linear and quadratic effect, p < 0.05). The effective thickness in the T3-T5 groups (linear and quadratic, p < 0.05) and the number of papillary nodes in the T2 and T3 groups were higher than those in the T1 group (quadratic, p < 0.05). The calcium content in the T2 and T3 groups was higher than that in the T1 group (quadratic effect, p < 0.05). The iron content in the T2 and T3 groups was higher than that in the T1 group (p < 0.05). (4) Conclusion: In summary, 0.5-1.0 g/kg CPP supplementation reduced the spoiled egg rate, enhanced the yolk and eggshell colors, increased the thickness of the effective layer, and the calcium and iron contents in the eggshell.

19.
Am J Chin Med ; 51(2): 461-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655687

RESUMO

Altered lipid metabolism is a hallmark of hepatocellular carcinoma (HCC), a common malignancy with a dismal prognosis against which there is a lack of effective therapeutic strategies. Bufalin, a classical Na[Formula: see text]-K[Formula: see text]-ATPase (NKA) inhibitor, shows a potent antitumor effect against HCC. However, the role of bufalin in regulating lipid metabolism-related pathways of HCC remains unclear. In this study, we examined the interaction between bufalin and its target molecule, ATP1A1/CA2, in vitro and in vivo and explored the intersected downstream pathways in silico. A multi-omics analysis of transcriptomics and metabolomics was employed to screen for potential action targets. The results were verified and correlated with the downstream lipid de novo synthesis pathway and the bufalin/ATP1A1/CA2 axis. We found that bufalin suppressed the ATP1A1/CA2 ratio in the treated HCC cells and showed a negative correlation with bufalin drug sensitivity. Functionally, ATP1A1 overexpression and CA2 down-regulation inhibited the bufalin-suppressed HCC proliferation and metastasis. Furthermore, down-regulation of CA2 induced epithelial-mesenchymal transition and bufalin resistance in HCC cells by up-regulating ATP1A1. Mechanistically, lipid metabolism-related signaling pathways were enriched in low ATP1A1 and high CA2 expression subgroups in GSEA. The multi-omics analysis also showed that bufalin was closely related to lipid metabolism. We demonstrated that bufalin inhibits lipogenesis and tumorigenesis by down-regulating SREBP-1/FASN/ACLY via modulating the ATP1A1/CA2 axis in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lipogênese/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proliferação de Células/genética , Transformação Celular Neoplásica , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
Environ Sci Pollut Res Int ; 30(2): 4123-4136, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35962890

RESUMO

Herein, an iron-doped ZIF-8-loaded multi-walled carbon nanotube (FZM) was synthesized and its adsorption performance on tetracycline (TC) was investigated. The experimental conditions (solution pH, temperature, adsorbent dose) were optimized by Box-Behnken design (BBD) in response surface methodology (RSM). The results show that the adsorption effect of TC by FZM is optimal under the conditions of temperature = 298 K, pH = 6, and contact time = 360 min. The adsorption processes of TC by FZM follow the pseudo-second-order (PSO) kinetic and Freundlich isotherm models, indicating that chemisorption is the dominant factor and the adsorption reaction is multi-layer, with a theoretical maximum saturation capacity of 1111.11 mg/g at 298 K. The adsorption thermodynamic results indicate that the adsorption of TC by FZM is a spontaneous and endothermic process. The mechanism of TC adsorption by FZM possibly occurs through hydrogen bonding, surface complexation, π-π interaction, and electrostatic interaction. From the statistical results, the optimal adsorption capacity of TC by FZM is 599.78 mg/g at a pH of 7.1, a temperature of 312.5 K, and an adsorbent dose of 64.43 mg/L, with a deviation of 1.73% from the actual value. Furthermore, regeneration experiments demonstrate that FZM has excellent reusability with a 15% loss of adsorption capacity after four cycles. This study provides some insights to study the adsorption behavior of TC by MOFs and the optimization of the adsorption experimental conditions, and also shows the potential of FZM for TC removal.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Antibacterianos , Tetraciclina , Cinética , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA