Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400115, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678491

RESUMO

High-power-density electronic devices under vibrations call for soft and damping thermal interface materials (TIMs) for efficient heat dissipation. However, integrating low hardness, high damping, and superior heat transfer capability into one TIM is highly challenging. Herein, soft, damping, and thermally conductive TIMs are designed and prepared by constructing a honeycomb-board-mimetic boron nitride nanosheet (BNNS) network in a dynamic polyimine via one-step horizontal centrifugal casting. The unique filler network makes the TIMs perform a high through-plane thermal conductivity (> 7.69 W m-1 K-1) and a uniform heat transfer process. Meanwhile, the hierarchical dynamic bonding of the polyimine endows the TIMs with low compressive strength (2.16 MPa at 20% strain) and excellent damping performance (tan δ > ≈0.3 at 10-2-102 Hz). The resulting TIMs also exhibit electrical insulation and remarkable recycling ability. Compared with the commercial ones, the TIMs provide better heat dissipation (4.1 °C) for a high-power 5G base station and less temperature fluctuation (1.8 °C) for an automotive insulated gate bipolar transistor (IGBT) under vibrations. This rational design offers a viable approach to prepare soft and damping TIMs for effective heat dissipation of high-power-density electronic devices under vibrations.

2.
Small ; 20(19): e2307308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126576

RESUMO

Reaction kinetics can be improved by the enhanced electrical contact between different components growing symbiotically. But so far, due to the necessity for material synthesis conditions match, the component structures of cooperative growth are similar, and the materials are of the same type. The collaborative growth of high-reaction kinetics composite homogeneous core-shell heterostructure between various materials is innovatively proposed with different structures in one step. The NiCo-LDH and PPy successfully symbiotically grow on activated carbon fiber fabric in one step. The open channel structure of the NiCo-LDH nanosheets is preserved while PPy effectively wrapped around the NiCo-LDH. The well-defined nanostructure with abundant active sites and convenient ion diffusion paths is favorable for electrolyte entry into the entire nanoarrays. In addition, owing to the enhanced electronic interaction between different components through XPS analysis, the NiCo-LDH@PPy electrode shows outstanding reaction kinetics and structural stability. The as-synthesized NiCo-LDH@PPy exhibited excellent super-capacitive storage capabilities, robust capacitive activity, and good rate survival. Furthermore, an asymmetric supercapacitor (ASC) device made of NiCo-LDH@PPy and activated carbon (AC) is able to maintain a long cycle life while achieving high power and energy densities.

3.
Medicine (Baltimore) ; 100(38): e27211, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559110

RESUMO

RATIONALE: Pulmonary embolism (PE) has diverse clinical manifestations and syncope might be the first or only symptom of PE. Tumor disease usually presents with symptoms associated with the primary site, however, PE may be the first manifestation of occult tumors. PATIENT CONCERNS: Here, we report 2 patients admitted to our hospital because of syncope. One patient had a chronic hepatitis B history of more than 20 years and the other patient had chronic heavy drinking for many years. Neither patient had been diagnosed with neoplastic disease before admission. DIAGNOSES: Clinical examinations, including laboratory tests and imaging tests upon admission demonstrated PE resulting in syncope. Furthermore, malignant hepatocellular carcinoma (HCC), inferior vena cava, and right atrium tumor thrombus were diagnosed. INTERVENTIONS: Thrombolysis and anti-coagulation therapy were performed immediately after the diagnosis of PE. Twenty-seven HCC patients with PE in 27 articles from 1962 to 2020 in the PubMed database were reviewed. OUTCOMES: The improvement was achieved that no syncope recurred after treatment of PE. The oxygen partial pressure increased and the D-dimer level decreased. The clinical characteristics of 27 HCC patients with PE were summarized and analyzed. LESSONS: It is important for clinicians to be aware that occult carcinoma might be a reason for patients with PE presenting with syncope. If PE cannot be explained by common causes, such as our patient, and HCC should be highly suspected when inferior vena cava and right atrial mass are found on imaging tests.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Embolia Pulmonar/diagnóstico , Idoso , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/diagnóstico por imagem , Diagnóstico Diferencial , Humanos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Embolia Pulmonar/complicações , Embolia Pulmonar/diagnóstico por imagem , Síncope/etiologia , Tomografia Computadorizada por Raios X
4.
J Hazard Mater ; 340: 67-76, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28711834

RESUMO

The development of oil sorbents with high thermal stability, adsorption capacity, reusability and recoverability is of great significance for hot oil leakage protection, especially for oil spillage of oil refinery, petrochemical industry and cars. In our work, highly efficient hot oil adsorption of polyimide (PI) fibers with excellent thermal stability was successfully prepared by a facile electrospinning method followed by post-treatment. The corresponding morphologies, structures and oil adsorption properties of as-prepared PI fibers at different temperatures were analyzed and characterized. Results showed that PI fibers presented a stable morphology and pore structure at 200°C. The oil adsorption capacity of porous PI fibers for hot motor oil (200°C) was about 57.4gg-1, higher than that of PI fibers (32.7gg-1) with non-porous structure for the motor oil at room temperature. Even after ten adsorption cycles, porous PI fibers still maintained a comparable oil sorption capacity (oil retention of 4.2%). The obtained porous PI fibers exhibited excellent hot oil adsorption capacity, reusability and recoverability, which would broaden the application of electrospun fibers in oil spill cleanup and further provide a versatile platform for exploring the technologies of nanofibers in hot oil adsorption field.

5.
J Phys Chem B ; 120(46): 12003-12014, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27934400

RESUMO

Organic-inorganic nanocomposites composed of polyhedral oligomeric silsesquioxane (POSS) and epoxy resin were prepared via self-assembly of an amphiphilic triblock copolymer bearing a poly(POSS) midblock in epoxy thermosets. First, this organic-inorganic amphiphilic triblock copolymer was synthesized via hydrosilylation of heptaphenylhydro POSS with an existing triblock copolymer containing a short polybutadiene midblock. It was found that this novel amphiphilic block copolymer can self-assemble into nanophases in epoxy thermosets. In the presence of preformed nanophases, the curing reaction was performed, and the organic-inorganic nanocomposites containing poly(POSS) microdomains were thus obtained. Compared with plain epoxy, the as-obtained thermosets exhibited enhanced surface hydrophobicity; the enhanced surface hydrophobicity is attributed to enrichment of the POSS component at the surface of the materials. Owing to the formation of poly(POSS) microdomains, the dielectric constants of the materials significantly reduced, whereas the dielectric loss remained almost unchanged.

6.
J Phys Chem B ; 117(27): 8256-68, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23768062

RESUMO

In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).


Assuntos
Nanoestruturas/química , Polímeros/química , Metacrilatos/química , Microscopia Eletrônica de Transmissão , Compostos de Organossilício/química , Poliésteres/química , Polímeros/síntese química , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA