Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(6): 112650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314930

RESUMO

METTL14 (methyltransferase-like 14) is an RNA-binding protein that partners with METTL3 to mediate N6-methyladenosine (m6A) methylation. Recent studies identified a function for METTL3 in heterochromatin in mouse embryonic stem cells (mESCs), but the molecular function of METTL14 on chromatin in mESCs remains unclear. Here, we show that METTL14 specifically binds and regulates bivalent domains, which are marked by trimethylation of histone H3 lysine 27 (H3K27me3) and lysine 4 (H3K4me3). Knockout of Mettl14 results in decreased H3K27me3 but increased H3K4me3 levels, leading to increased transcription. We find that bivalent domain regulation by METTL14 is independent of METTL3 or m6A modification. METTL14 enhances H3K27me3 and reduces H3K4me3 by interacting with and probably recruiting the H3K27 methyltransferase polycomb repressive complex 2 (PRC2) and H3K4 demethylase KDM5B to chromatin. Our findings identify an METTL3-independent role of METTL14 in maintaining the integrity of bivalent domains in mESCs, thus indicating a mechanism of bivalent domain regulation in mammals.


Assuntos
Cromatina , Histonas , Metiltransferases , Animais , Camundongos , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Metiltransferases/metabolismo
3.
Angew Chem Int Ed Engl ; 62(8): e202217941, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36583627

RESUMO

The inability to re-process thermosets hinders their utility and sustainability. An ideal material should combine closed-loop recycling and upcycling capabilities. This trait is realized in polydimethylsiloxane bottlebrush networks using thermoreversible Diels-Alder cycloadditions to enable both reversible disassembly into a polymer melt and on-demand reconfiguration to an elastomer of either lower or higher stiffness. The crosslink density was tuned by loading the functionalized networks with a controlled fraction of dormant crosslinkers and crosslinker scavengers, such as furan-capped bis-maleimide and anthracene, respectively. The resulting modulus variations precisely followed the stoichiometry of activated furan and maleimide moieties, demonstrating the lack of side reactions during reprocessing. The presented circularity concept is independent from the backbone or side chain chemistry, making it potentially applicable to a wide range of brush-like polymers.

4.
Plant Cell Rep ; 41(2): 365-376, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34812898

RESUMO

KEY MESSAGE: Hydrogen sulfide closed Arabidopsis thaliana stomata by increasing the transcription of melatonin-producing enzymes and the post-translational modification levels to combat osmotic stress. Hydrogen sulfide (H2S) and melatonin (MEL) reportedly have similar functions in many aspects of plant growth, development and stress response. They regulate stomatal movement and enhance drought resistance. However, their physiological relationship is not well understood. Here, their crosstalk involved in osmotic stress resistance in Arabidopsis thaliana was studied. Exogenous H2S and MEL closed stomata under normal or osmotic stress conditions and increased the relative water contents of plants under osmotic stress conditions. At the same time, exogenous H2S and MEL responded to osmotic stress by increasing the content of proline and soluble sugar, and reducing malondialdehyde (MDA) content and relative conductivity. Using mutants in the MEL-associated production of serotonin N-acetyltransferase (snat), caffeic acid O-methyltransferase (comt1) and N-acetylserotonin methyltransferase (asmt), we determined that H2S was partially dependent on MEL to close stomata. Additionally, the overexpression of ASMT promoted stomatal closure. Exogenous H2S increased the transcription levels of SNAT, ASMT and COMT1. Furthermore, exogenous H2S treatments increased the endogenous MEL content significantly. At the post-translational level, H2S sulfhydrated the SNAT and ASMT, but not COMT1, enzymes associated with MEL production. Thus, H2S appeared to promote stomatal closure in response to osmotic stress by increasing the transcription levels of MEL synthesis-related genes and the sulfhydryl modification of the encoded enzymes. These results increased our understanding of H2S and MEL functions and interactions under osmotic stress conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Enzimas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Pressão Osmótica/fisiologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Enzimas/genética , Regulação da Expressão Gênica de Plantas , Sulfeto de Hidrogênio/farmacologia , Malondialdeído/metabolismo , Melatonina/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Açúcares/metabolismo , Água/metabolismo
5.
Adv Mater ; 32(50): e2005314, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33176030

RESUMO

The ability of living species to transition between rigid and flexible shapes represents one of their survival mechanisms, which has been adopted by various human technologies. Such transition is especially desired in medical devices as rigidity facilitates the implantation process, while flexibility and softness favor biocompatibility with surrounding tissue. Traditional thermoplastics cannot match soft tissue mechanics, while gels leach into the body and alter their properties over time. Here, a single-component system with an unprecedented drop of Young's modulus by up to six orders of magnitude from the GPa to kPa level at a controlled temperature within 28-43 °C is demonstrated. This approach is based on brush-like polymer networks with crystallizable side chains, e.g., poly(valerolactone), affording independent control of melting temperature and Young's modulus by concurrently altering side chain length and crosslink density. Softening down to the tissue level at the physiological temperature allows the design of tissue-adaptive implants that can be inserted as rigid devices followed by matching the surrounding tissue mechanics at body temperature. This transition also enables thermally triggered release of embedded drugs for anti-inflammatory treatment.


Assuntos
Materiais Inteligentes , Temperatura de Transição , Módulo de Elasticidade , Teste de Materiais
6.
Adv Mater ; 30(26): e1707461, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29761565

RESUMO

Heating-triggered shape actuation is vital for biomedical applications. The likely overheating and subsequent damage of surrounding tissue, however, severely limit its utilization in vivo. Herein, cooling-triggered shapeshifting is achieved by designing dual-network hydrogels that integrate a permanent network for elastic energy storage and a reversible network of hydrophobic crosslinks for "freezing" temporary shapes when heated. Upon cooling to 10 °C, the hydrophobic interactions weaken and allow recovery of the original shape, and thus programmable shape alterations. Further, multiple temporary shapes can be encoded independently at either different temperatures or different times during the isothermal network formation. The ability of these hydrogels to shapeshift at benign conditions may revolutionize biomedical implants and soft robotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA